Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Unicode version

Theorem cvmlift3lem5 27355
Description: Lemma for cvmlift2 27348. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
Assertion
Ref Expression
cvmlift3lem5  |-  ( ph  ->  ( F  o.  H
)  =  G )
Distinct variable groups:    z, f,
g, x    f, J    x, g, J    f, F, g    x, z, F    f, H, g, x, z    B, f, g, x, z    f, G, g, x, z    C, f, g, x, z    ph, f, x    f, K, g, x, z    P, f, g, x, z    f, O, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g)    J( z)

Proof of Theorem cvmlift3lem5
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . . . 5  |-  ( H `
 y )  =  ( H `  y
)
2 cvmlift3.b . . . . . 6  |-  B  = 
U. C
3 cvmlift3.y . . . . . 6  |-  Y  = 
U. K
4 cvmlift3.f . . . . . 6  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmlift3.k . . . . . 6  |-  ( ph  ->  K  e. SCon )
6 cvmlift3.l . . . . . 6  |-  ( ph  ->  K  e. 𝑛Locally PCon )
7 cvmlift3.o . . . . . 6  |-  ( ph  ->  O  e.  Y )
8 cvmlift3.g . . . . . 6  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
9 cvmlift3.p . . . . . 6  |-  ( ph  ->  P  e.  B )
10 cvmlift3.e . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
11 cvmlift3.h . . . . . 6  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 27354 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  (
( H `  y
)  =  ( H `
 y )  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  y  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y ) ) ) )
131, 12mpbii 211 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  y  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y ) ) )
14 df-3an 967 . . . . . 6  |-  ( ( ( f `  0
)  =  O  /\  ( f `  1
)  =  y  /\  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) )  <->  ( ( ( f `  0 )  =  O  /\  (
f `  1 )  =  y )  /\  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) ) )
15 eqid 2454 . . . . . . . . . . . 12  |-  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )
164ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  F  e.  ( C CovMap  J ) )
17 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  f  e.  ( II  Cn  K ) )
188ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  G  e.  ( K  Cn  J ) )
19 cnco 19001 . . . . . . . . . . . . 13  |-  ( ( f  e.  ( II 
Cn  K )  /\  G  e.  ( K  Cn  J ) )  -> 
( G  o.  f
)  e.  ( II 
Cn  J ) )
2017, 18, 19syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( G  o.  f )  e.  ( II  Cn  J ) )
219ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  P  e.  B
)
22 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( f ` 
0 )  =  O )
2322fveq2d 5802 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( G `  ( f `  0
) )  =  ( G `  O ) )
24 iiuni 20588 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  = 
U. II
2524, 3cnf 18981 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( II  Cn  K )  ->  f : ( 0 [,] 1 ) --> Y )
2617, 25syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  f : ( 0 [,] 1 ) --> Y )
27 0elunit 11519 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
28 fvco3 5876 . . . . . . . . . . . . . 14  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
2926, 27, 28sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( G  o.  f ) ` 
0 )  =  ( G `  ( f `
 0 ) ) )
3010ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F `  P )  =  ( G `  O ) )
3123, 29, 303eqtr4rd 2506 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F `  P )  =  ( ( G  o.  f
) `  0 )
)
322, 15, 16, 20, 21, 31cvmliftiota 27333 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) )  =  ( G  o.  f
)  /\  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) `  0 )  =  P ) )
3332simp2d 1001 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F  o.  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) )  =  ( G  o.  f
) )
3433fveq1d 5800 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( F  o.  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ) `
 1 )  =  ( ( G  o.  f ) `  1
) )
3532simp1d 1000 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) )  e.  ( II  Cn  C
) )
3624, 2cnf 18981 . . . . . . . . . . 11  |-  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )  e.  ( II  Cn  C )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
3735, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
38 1elunit 11520 . . . . . . . . . 10  |-  1  e.  ( 0 [,] 1
)
39 fvco3 5876 . . . . . . . . . 10  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1
) )  ->  (
( F  o.  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) ) `  1
)  =  ( F `
 ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 ) ) )
4037, 38, 39sylancl 662 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( F  o.  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ) `
 1 )  =  ( F `  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
) ) )
41 fvco3 5876 . . . . . . . . . . 11  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  1 )  =  ( G `  (
f `  1 )
) )
4226, 38, 41sylancl 662 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( G  o.  f ) ` 
1 )  =  ( G `  ( f `
 1 ) ) )
43 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( f ` 
1 )  =  y )
4443fveq2d 5802 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( G `  ( f `  1
) )  =  ( G `  y ) )
4542, 44eqtrd 2495 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( G  o.  f ) ` 
1 )  =  ( G `  y ) )
4634, 40, 453eqtr3d 2503 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F `  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 ) )  =  ( G `  y
) )
47 fveq2 5798 . . . . . . . . 9  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y )  -> 
( F `  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
) )  =  ( F `  ( H `
 y ) ) )
4847eqeq1d 2456 . . . . . . . 8  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y )  -> 
( ( F `  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 ) )  =  ( G `  y
)  <->  ( F `  ( H `  y ) )  =  ( G `
 y ) ) )
4946, 48syl5ibcom 220 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y )  -> 
( F `  ( H `  y )
)  =  ( G `
 y ) ) )
5049expimpd 603 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  y )  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y ) )  ->  ( F `  ( H `  y ) )  =  ( G `
 y ) ) )
5114, 50syl5bi 217 . . . . 5  |-  ( ( ( ph  /\  y  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  y  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) )  ->  ( F `  ( H `  y
) )  =  ( G `  y ) ) )
5251rexlimdva 2945 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  y  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) )  ->  ( F `  ( H `  y
) )  =  ( G `  y ) ) )
5313, 52mpd 15 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( F `  ( H `  y ) )  =  ( G `  y
) )
5453mpteq2dva 4485 . 2  |-  ( ph  ->  ( y  e.  Y  |->  ( F `  ( H `  y )
) )  =  ( y  e.  Y  |->  ( G `  y ) ) )
552, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 27353 . . . 4  |-  ( ph  ->  H : Y --> B )
5655ffvelrnda 5951 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( H `  y )  e.  B )
5755feqmptd 5852 . . 3  |-  ( ph  ->  H  =  ( y  e.  Y  |->  ( H `
 y ) ) )
58 cvmcn 27294 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
59 eqid 2454 . . . . . 6  |-  U. J  =  U. J
602, 59cnf 18981 . . . . 5  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
614, 58, 603syl 20 . . . 4  |-  ( ph  ->  F : B --> U. J
)
6261feqmptd 5852 . . 3  |-  ( ph  ->  F  =  ( w  e.  B  |->  ( F `
 w ) ) )
63 fveq2 5798 . . 3  |-  ( w  =  ( H `  y )  ->  ( F `  w )  =  ( F `  ( H `  y ) ) )
6456, 57, 62, 63fmptco 5984 . 2  |-  ( ph  ->  ( F  o.  H
)  =  ( y  e.  Y  |->  ( F `
 ( H `  y ) ) ) )
653, 59cnf 18981 . . . 4  |-  ( G  e.  ( K  Cn  J )  ->  G : Y --> U. J )
668, 65syl 16 . . 3  |-  ( ph  ->  G : Y --> U. J
)
6766feqmptd 5852 . 2  |-  ( ph  ->  G  =  ( y  e.  Y  |->  ( G `
 y ) ) )
6854, 64, 673eqtr4d 2505 1  |-  ( ph  ->  ( F  o.  H
)  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2799   U.cuni 4198    |-> cmpt 4457    o. ccom 4951   -->wf 5521   ` cfv 5525   iota_crio 6159  (class class class)co 6199   0cc0 9392   1c1 9393   [,]cicc 11413    Cn ccn 18959  𝑛Locally cnlly 19200   IIcii 20582  PConcpcon 27251  SConcscon 27252   CovMap ccvm 27287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-ec 7212  df-map 7325  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-seq 11923  df-exp 11982  df-hash 12220  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-clim 13083  df-sum 13281  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cld 18754  df-ntr 18755  df-cls 18756  df-nei 18833  df-cn 18962  df-cnp 18963  df-cmp 19121  df-con 19147  df-lly 19201  df-nlly 19202  df-tx 19266  df-hmeo 19459  df-xms 20026  df-ms 20027  df-tms 20028  df-ii 20584  df-htpy 20673  df-phtpy 20674  df-phtpc 20695  df-pco 20708  df-pcon 27253  df-scon 27254  df-cvm 27288
This theorem is referenced by:  cvmlift3lem6  27356  cvmlift3lem7  27357  cvmlift3lem9  27359
  Copyright terms: Public domain W3C validator