Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem5 Structured version   Unicode version

Theorem cvmlift3lem5 27062
Description: Lemma for cvmlift2 27055. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
Assertion
Ref Expression
cvmlift3lem5  |-  ( ph  ->  ( F  o.  H
)  =  G )
Distinct variable groups:    z, f,
g, x    f, J    x, g, J    f, F, g    x, z, F    f, H, g, x, z    B, f, g, x, z    f, G, g, x, z    C, f, g, x, z    ph, f, x    f, K, g, x, z    P, f, g, x, z    f, O, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g)    J( z)

Proof of Theorem cvmlift3lem5
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( H `
 y )  =  ( H `  y
)
2 cvmlift3.b . . . . . 6  |-  B  = 
U. C
3 cvmlift3.y . . . . . 6  |-  Y  = 
U. K
4 cvmlift3.f . . . . . 6  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
5 cvmlift3.k . . . . . 6  |-  ( ph  ->  K  e. SCon )
6 cvmlift3.l . . . . . 6  |-  ( ph  ->  K  e. 𝑛Locally PCon )
7 cvmlift3.o . . . . . 6  |-  ( ph  ->  O  e.  Y )
8 cvmlift3.g . . . . . 6  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
9 cvmlift3.p . . . . . 6  |-  ( ph  ->  P  e.  B )
10 cvmlift3.e . . . . . 6  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
11 cvmlift3.h . . . . . 6  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem4 27061 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  (
( H `  y
)  =  ( H `
 y )  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  y  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y ) ) ) )
131, 12mpbii 211 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  y  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y ) ) )
14 df-3an 962 . . . . . 6  |-  ( ( ( f `  0
)  =  O  /\  ( f `  1
)  =  y  /\  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) )  <->  ( ( ( f `  0 )  =  O  /\  (
f `  1 )  =  y )  /\  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) ) )
15 eqid 2435 . . . . . . . . . . . 12  |-  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )
164ad3antrrr 724 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  F  e.  ( C CovMap  J ) )
17 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  f  e.  ( II  Cn  K ) )
188ad3antrrr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  G  e.  ( K  Cn  J ) )
19 cnco 18714 . . . . . . . . . . . . 13  |-  ( ( f  e.  ( II 
Cn  K )  /\  G  e.  ( K  Cn  J ) )  -> 
( G  o.  f
)  e.  ( II 
Cn  J ) )
2017, 18, 19syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( G  o.  f )  e.  ( II  Cn  J ) )
219ad3antrrr 724 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  P  e.  B
)
22 simprl 750 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( f ` 
0 )  =  O )
2322fveq2d 5685 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( G `  ( f `  0
) )  =  ( G `  O ) )
24 iiuni 20301 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  = 
U. II
2524, 3cnf 18694 . . . . . . . . . . . . . . 15  |-  ( f  e.  ( II  Cn  K )  ->  f : ( 0 [,] 1 ) --> Y )
2617, 25syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  f : ( 0 [,] 1 ) --> Y )
27 0elunit 11392 . . . . . . . . . . . . . 14  |-  0  e.  ( 0 [,] 1
)
28 fvco3 5758 . . . . . . . . . . . . . 14  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
2926, 27, 28sylancl 657 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( G  o.  f ) ` 
0 )  =  ( G `  ( f `
 0 ) ) )
3010ad3antrrr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F `  P )  =  ( G `  O ) )
3123, 29, 303eqtr4rd 2478 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F `  P )  =  ( ( G  o.  f
) `  0 )
)
322, 15, 16, 20, 21, 31cvmliftiota 27040 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) )  =  ( G  o.  f
)  /\  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) `  0 )  =  P ) )
3332simp2d 996 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F  o.  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) )  =  ( G  o.  f
) )
3433fveq1d 5683 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( F  o.  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ) `
 1 )  =  ( ( G  o.  f ) `  1
) )
3532simp1d 995 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) )  e.  ( II  Cn  C
) )
3624, 2cnf 18694 . . . . . . . . . . 11  |-  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )  e.  ( II  Cn  C )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
3735, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
38 1elunit 11393 . . . . . . . . . 10  |-  1  e.  ( 0 [,] 1
)
39 fvco3 5758 . . . . . . . . . 10  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1
) )  ->  (
( F  o.  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) ) `  1
)  =  ( F `
 ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 ) ) )
4037, 38, 39sylancl 657 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( F  o.  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ) `
 1 )  =  ( F `  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
) ) )
41 fvco3 5758 . . . . . . . . . . 11  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  1 )  =  ( G `  (
f `  1 )
) )
4226, 38, 41sylancl 657 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( G  o.  f ) ` 
1 )  =  ( G `  ( f `
 1 ) ) )
43 simprr 751 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( f ` 
1 )  =  y )
4443fveq2d 5685 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( G `  ( f `  1
) )  =  ( G `  y ) )
4542, 44eqtrd 2467 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( G  o.  f ) ` 
1 )  =  ( G `  y ) )
4634, 40, 453eqtr3d 2475 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( F `  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 ) )  =  ( G `  y
) )
47 fveq2 5681 . . . . . . . . 9  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y )  -> 
( F `  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
) )  =  ( F `  ( H `
 y ) ) )
4847eqeq1d 2443 . . . . . . . 8  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y )  -> 
( ( F `  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 ) )  =  ( G `  y
)  <->  ( F `  ( H `  y ) )  =  ( G `
 y ) ) )
4946, 48syl5ibcom 220 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Y )  /\  f  e.  (
II  Cn  K )
)  /\  ( (
f `  0 )  =  O  /\  (
f `  1 )  =  y ) )  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y )  -> 
( F `  ( H `  y )
)  =  ( G `
 y ) ) )
5049expimpd 600 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  y )  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  ( H `
 y ) )  ->  ( F `  ( H `  y ) )  =  ( G `
 y ) ) )
5114, 50syl5bi 217 . . . . 5  |-  ( ( ( ph  /\  y  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  y  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) )  ->  ( F `  ( H `  y
) )  =  ( G `  y ) ) )
5251rexlimdva 2833 . . . 4  |-  ( (
ph  /\  y  e.  Y )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  y  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  ( H `  y ) )  ->  ( F `  ( H `  y
) )  =  ( G `  y ) ) )
5313, 52mpd 15 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( F `  ( H `  y ) )  =  ( G `  y
) )
5453mpteq2dva 4368 . 2  |-  ( ph  ->  ( y  e.  Y  |->  ( F `  ( H `  y )
) )  =  ( y  e.  Y  |->  ( G `  y ) ) )
552, 3, 4, 5, 6, 7, 8, 9, 10, 11cvmlift3lem3 27060 . . . 4  |-  ( ph  ->  H : Y --> B )
5655ffvelrnda 5833 . . 3  |-  ( (
ph  /\  y  e.  Y )  ->  ( H `  y )  e.  B )
5755feqmptd 5734 . . 3  |-  ( ph  ->  H  =  ( y  e.  Y  |->  ( H `
 y ) ) )
58 cvmcn 27001 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
59 eqid 2435 . . . . . 6  |-  U. J  =  U. J
602, 59cnf 18694 . . . . 5  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
614, 58, 603syl 20 . . . 4  |-  ( ph  ->  F : B --> U. J
)
6261feqmptd 5734 . . 3  |-  ( ph  ->  F  =  ( w  e.  B  |->  ( F `
 w ) ) )
63 fveq2 5681 . . 3  |-  ( w  =  ( H `  y )  ->  ( F `  w )  =  ( F `  ( H `  y ) ) )
6456, 57, 62, 63fmptco 5865 . 2  |-  ( ph  ->  ( F  o.  H
)  =  ( y  e.  Y  |->  ( F `
 ( H `  y ) ) ) )
653, 59cnf 18694 . . . 4  |-  ( G  e.  ( K  Cn  J )  ->  G : Y --> U. J )
668, 65syl 16 . . 3  |-  ( ph  ->  G : Y --> U. J
)
6766feqmptd 5734 . 2  |-  ( ph  ->  G  =  ( y  e.  Y  |->  ( G `
 y ) ) )
6854, 64, 673eqtr4d 2477 1  |-  ( ph  ->  ( F  o.  H
)  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1757   E.wrex 2708   U.cuni 4081    e. cmpt 4340    o. ccom 4833   -->wf 5404   ` cfv 5408   iota_crio 6040  (class class class)co 6082   0cc0 9272   1c1 9273   [,]cicc 11293    Cn ccn 18672  𝑛Locally cnlly 18913   IIcii 20295  PConcpcon 26958  SConcscon 26959   CovMap ccvm 26994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-addf 9351  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-er 7091  df-ec 7093  df-map 7206  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ioo 11294  df-ico 11296  df-icc 11297  df-fz 11427  df-fzo 11535  df-fl 11628  df-seq 11793  df-exp 11852  df-hash 12090  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-clim 12952  df-sum 13150  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-cn 18675  df-cnp 18676  df-cmp 18834  df-con 18860  df-lly 18914  df-nlly 18915  df-tx 18979  df-hmeo 19172  df-xms 19739  df-ms 19740  df-tms 19741  df-ii 20297  df-htpy 20386  df-phtpy 20387  df-phtpc 20408  df-pco 20421  df-pcon 26960  df-scon 26961  df-cvm 26995
This theorem is referenced by:  cvmlift3lem6  27063  cvmlift3lem7  27064  cvmlift3lem9  27066
  Copyright terms: Public domain W3C validator