Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem4 Structured version   Unicode version

Theorem cvmlift3lem4 29031
Description: Lemma for cvmlift2 29025. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
Assertion
Ref Expression
cvmlift3lem4  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
Distinct variable groups:    z, f, A    f, g, z, x   
f, J    x, g, J    f, F, g    x, z, F    f, H, g, x, z    B, f, g, x, z    f, X, g, x, z    f, G, g, x, z    C, f, g, x, z    ph, f, x    f, K, g, x, z    P, f, g, x, z    f, O, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g)    A( x, g)    J( z)

Proof of Theorem cvmlift3lem4
StepHypRef Expression
1 cvmlift3.b . . . . 5  |-  B  = 
U. C
2 cvmlift3.y . . . . 5  |-  Y  = 
U. K
3 cvmlift3.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . . . 5  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . . . 5  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . . . 5  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . . . 5  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . . . 5  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . . . 5  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 29030 . . . 4  |-  ( ph  ->  H : Y --> B )
1211ffvelrnda 6007 . . 3  |-  ( (
ph  /\  X  e.  Y )  ->  ( H `  X )  e.  B )
13 eleq1 2526 . . 3  |-  ( ( H `  X )  =  A  ->  (
( H `  X
)  e.  B  <->  A  e.  B ) )
1412, 13syl5ibcom 220 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  ->  A  e.  B )
)
15 eqid 2454 . . . . . . . . . . 11  |-  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )
163ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  F  e.  ( C CovMap  J ) )
17 simprl 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  f  e.  ( II  Cn  K
) )
187ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  G  e.  ( K  Cn  J
) )
19 cnco 19934 . . . . . . . . . . . 12  |-  ( ( f  e.  ( II 
Cn  K )  /\  G  e.  ( K  Cn  J ) )  -> 
( G  o.  f
)  e.  ( II 
Cn  J ) )
2017, 18, 19syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( G  o.  f )  e.  ( II  Cn  J ) )
218ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  P  e.  B )
22 simprr 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( f `  0 )  =  O )
2322fveq2d 5852 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( G `  ( f `  0
) )  =  ( G `  O ) )
24 iiuni 21551 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
2524, 2cnf 19914 . . . . . . . . . . . . . 14  |-  ( f  e.  ( II  Cn  K )  ->  f : ( 0 [,] 1 ) --> Y )
2617, 25syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  f :
( 0 [,] 1
) --> Y )
27 0elunit 11641 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,] 1
)
28 fvco3 5925 . . . . . . . . . . . . 13  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
2926, 27, 28sylancl 660 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
309ad2antrr 723 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( F `  P )  =  ( G `  O ) )
3123, 29, 303eqtr4rd 2506 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( F `  P )  =  ( ( G  o.  f
) `  0 )
)
321, 15, 16, 20, 21, 31cvmliftiota 29010 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) )  e.  ( II 
Cn  C )  /\  ( F  o.  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) )  =  ( G  o.  f )  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
0 )  =  P ) )
3332simp1d 1006 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  e.  ( II  Cn  C
) )
3424, 1cnf 19914 . . . . . . . . 9  |-  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )  e.  ( II  Cn  C )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
3533, 34syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
36 1elunit 11642 . . . . . . . 8  |-  1  e.  ( 0 [,] 1
)
37 ffvelrn 6005 . . . . . . . 8  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1
) )  ->  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  e.  B )
3835, 36, 37sylancl 660 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) `  1 )  e.  B )
39 eleq1 2526 . . . . . . 7  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  -> 
( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  e.  B  <->  A  e.  B ) )
4038, 39syl5ibcom 220 . . . . . 6  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  ->  A  e.  B )
)
4140expr 613 . . . . 5  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  O  -> 
( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A  ->  A  e.  B
) ) )
4241a1dd 46 . . . 4  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  O  -> 
( ( f ` 
1 )  =  X  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  ->  A  e.  B )
) ) )
43423impd 1208 . . 3  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  ->  A  e.  B ) )
4443rexlimdva 2946 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  ->  A  e.  B ) )
45 eqeq2 2469 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( f `  1
)  =  x  <->  ( f `  1 )  =  X ) )
46453anbi2d 1302 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
4746rexbidv 2965 . . . . . . . . 9  |-  ( x  =  X  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
4847riotabidv 6234 . . . . . . . 8  |-  ( x  =  X  ->  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  O  /\  (
f `  1 )  =  x  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
49 riotaex 6236 . . . . . . . 8  |-  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  e.  _V
5048, 10, 49fvmpt 5931 . . . . . . 7  |-  ( X  e.  Y  ->  ( H `  X )  =  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
5150adantl 464 . . . . . 6  |-  ( (
ph  /\  X  e.  Y )  ->  ( H `  X )  =  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
5251eqeq1d 2456 . . . . 5  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  A ) )
5352adantl 464 . . . 4  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( ( H `  X )  =  A  <-> 
( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  =  A ) )
541, 2, 3, 4, 5, 6, 7, 8, 9cvmlift3lem2 29029 . . . . 5  |-  ( (
ph  /\  X  e.  Y )  ->  E! z  e.  B  E. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  O  /\  (
f `  1 )  =  X  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )
55 eqeq2 2469 . . . . . . . 8  |-  ( z  =  A  ->  (
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  z  <-> 
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  A ) )
56553anbi3d 1303 . . . . . . 7  |-  ( z  =  A  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
5756rexbidv 2965 . . . . . 6  |-  ( z  =  A  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A ) ) )
5857riota2 6254 . . . . 5  |-  ( ( A  e.  B  /\  E! z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  <->  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  A ) )
5954, 58sylan2 472 . . . 4  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A )  <-> 
( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  =  A ) )
6053, 59bitr4d 256 . . 3  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( ( H `  X )  =  A  <->  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A ) ) )
6160expcom 433 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  ( A  e.  B  ->  ( ( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) ) )
6214, 44, 61pm5.21ndd 352 1  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805   E!wreu 2806   U.cuni 4235    |-> cmpt 4497    o. ccom 4992   -->wf 5566   ` cfv 5570   iota_crio 6231  (class class class)co 6270   0cc0 9481   1c1 9482   [,]cicc 11535    Cn ccn 19892  𝑛Locally cnlly 20132   IIcii 21545  PConcpcon 28928  SConcscon 28929   CovMap ccvm 28964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-ec 7305  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-cn 19895  df-cnp 19896  df-cmp 20054  df-con 20079  df-lly 20133  df-nlly 20134  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991  df-ii 21547  df-htpy 21636  df-phtpy 21637  df-phtpc 21658  df-pco 21671  df-pcon 28930  df-scon 28931  df-cvm 28965
This theorem is referenced by:  cvmlift3lem5  29032  cvmlift3lem6  29033  cvmlift3lem7  29034  cvmlift3lem9  29036
  Copyright terms: Public domain W3C validator