Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem4 Structured version   Unicode version

Theorem cvmlift3lem4 27125
Description: Lemma for cvmlift2 27119. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b  |-  B  = 
U. C
cvmlift3.y  |-  Y  = 
U. K
cvmlift3.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift3.k  |-  ( ph  ->  K  e. SCon )
cvmlift3.l  |-  ( ph  ->  K  e. 𝑛Locally PCon )
cvmlift3.o  |-  ( ph  ->  O  e.  Y )
cvmlift3.g  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
cvmlift3.p  |-  ( ph  ->  P  e.  B )
cvmlift3.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
cvmlift3.h  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
Assertion
Ref Expression
cvmlift3lem4  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
Distinct variable groups:    z, f, A    f, g, z, x   
f, J    x, g, J    f, F, g    x, z, F    f, H, g, x, z    B, f, g, x, z    f, X, g, x, z    f, G, g, x, z    C, f, g, x, z    ph, f, x    f, K, g, x, z    P, f, g, x, z    f, O, g, x, z    f, Y, g, x, z
Allowed substitution hints:    ph( z, g)    A( x, g)    J( z)

Proof of Theorem cvmlift3lem4
StepHypRef Expression
1 cvmlift3.b . . . . 5  |-  B  = 
U. C
2 cvmlift3.y . . . . 5  |-  Y  = 
U. K
3 cvmlift3.f . . . . 5  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
4 cvmlift3.k . . . . 5  |-  ( ph  ->  K  e. SCon )
5 cvmlift3.l . . . . 5  |-  ( ph  ->  K  e. 𝑛Locally PCon )
6 cvmlift3.o . . . . 5  |-  ( ph  ->  O  e.  Y )
7 cvmlift3.g . . . . 5  |-  ( ph  ->  G  e.  ( K  Cn  J ) )
8 cvmlift3.p . . . . 5  |-  ( ph  ->  P  e.  B )
9 cvmlift3.e . . . . 5  |-  ( ph  ->  ( F `  P
)  =  ( G `
 O ) )
10 cvmlift3.h . . . . 5  |-  H  =  ( x  e.  Y  |->  ( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 27124 . . . 4  |-  ( ph  ->  H : Y --> B )
1211ffvelrnda 5840 . . 3  |-  ( (
ph  /\  X  e.  Y )  ->  ( H `  X )  e.  B )
13 eleq1 2501 . . 3  |-  ( ( H `  X )  =  A  ->  (
( H `  X
)  e.  B  <->  A  e.  B ) )
1412, 13syl5ibcom 220 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  ->  A  e.  B )
)
15 eqid 2441 . . . . . . . . . . 11  |-  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )
163ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  F  e.  ( C CovMap  J ) )
17 simprl 750 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  f  e.  ( II  Cn  K
) )
187ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  G  e.  ( K  Cn  J
) )
19 cnco 18770 . . . . . . . . . . . 12  |-  ( ( f  e.  ( II 
Cn  K )  /\  G  e.  ( K  Cn  J ) )  -> 
( G  o.  f
)  e.  ( II 
Cn  J ) )
2017, 18, 19syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( G  o.  f )  e.  ( II  Cn  J ) )
218ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  P  e.  B )
22 simprr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( f `  0 )  =  O )
2322fveq2d 5692 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( G `  ( f `  0
) )  =  ( G `  O ) )
24 iiuni 20357 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
2524, 2cnf 18750 . . . . . . . . . . . . . 14  |-  ( f  e.  ( II  Cn  K )  ->  f : ( 0 [,] 1 ) --> Y )
2617, 25syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  f :
( 0 [,] 1
) --> Y )
27 0elunit 11399 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,] 1
)
28 fvco3 5765 . . . . . . . . . . . . 13  |-  ( ( f : ( 0 [,] 1 ) --> Y  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
2926, 27, 28sylancl 657 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( G  o.  f ) `  0 )  =  ( G `  (
f `  0 )
) )
309ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( F `  P )  =  ( G `  O ) )
3123, 29, 303eqtr4rd 2484 . . . . . . . . . . 11  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( F `  P )  =  ( ( G  o.  f
) `  0 )
)
321, 15, 16, 20, 21, 31cvmliftiota 27104 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) )  e.  ( II 
Cn  C )  /\  ( F  o.  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) )  =  ( G  o.  f )  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
0 )  =  P ) )
3332simp1d 995 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) )  e.  ( II  Cn  C
) )
3424, 1cnf 18750 . . . . . . . . 9  |-  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) )  e.  ( II  Cn  C )  ->  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
3533, 34syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) : ( 0 [,] 1
) --> B )
36 1elunit 11400 . . . . . . . 8  |-  1  e.  ( 0 [,] 1
)
37 ffvelrn 5838 . . . . . . . 8  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) : ( 0 [,] 1 ) --> B  /\  1  e.  ( 0 [,] 1
) )  ->  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  e.  B )
3835, 36, 37sylancl 657 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( G  o.  f )  /\  ( g `  0
)  =  P ) ) `  1 )  e.  B )
39 eleq1 2501 . . . . . . 7  |-  ( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  -> 
( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  e.  B  <->  A  e.  B ) )
4038, 39syl5ibcom 220 . . . . . 6  |-  ( ( ( ph  /\  X  e.  Y )  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  O ) )  ->  ( (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  ->  A  e.  B )
)
4140expr 612 . . . . 5  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  O  -> 
( ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A  ->  A  e.  B
) ) )
4241a1dd 46 . . . 4  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  O  -> 
( ( f ` 
1 )  =  X  ->  ( ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A  ->  A  e.  B )
) ) )
43423impd 1196 . . 3  |-  ( ( ( ph  /\  X  e.  Y )  /\  f  e.  ( II  Cn  K
) )  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  ->  A  e.  B ) )
4443rexlimdva 2839 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  ->  A  e.  B ) )
45 eqeq2 2450 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
( f `  1
)  =  x  <->  ( f `  1 )  =  X ) )
46453anbi2d 1289 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
4746rexbidv 2734 . . . . . . . . 9  |-  ( x  =  X  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  x  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) ) )
4847riotabidv 6051 . . . . . . . 8  |-  ( x  =  X  ->  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  O  /\  (
f `  1 )  =  x  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
49 riotaex 6053 . . . . . . . 8  |-  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  e.  _V
5048, 10, 49fvmpt 5771 . . . . . . 7  |-  ( X  e.  Y  ->  ( H `  X )  =  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
5150adantl 463 . . . . . 6  |-  ( (
ph  /\  X  e.  Y )  ->  ( H `  X )  =  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) ) )
5251eqeq1d 2449 . . . . 5  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  A ) )
5352adantl 463 . . . 4  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( ( H `  X )  =  A  <-> 
( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  =  A ) )
541, 2, 3, 4, 5, 6, 7, 8, 9cvmlift3lem2 27123 . . . . 5  |-  ( (
ph  /\  X  e.  Y )  ->  E! z  e.  B  E. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  O  /\  (
f `  1 )  =  X  /\  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )
55 eqeq2 2450 . . . . . . . 8  |-  ( z  =  A  ->  (
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  z  <-> 
( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( G  o.  f
)  /\  ( g `  0 )  =  P ) ) ` 
1 )  =  A ) )
56553anbi3d 1290 . . . . . . 7  |-  ( z  =  A  ->  (
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
5756rexbidv 2734 . . . . . 6  |-  ( z  =  A  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A ) ) )
5857riota2 6073 . . . . 5  |-  ( ( A  e.  B  /\  E! z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A )  <->  ( iota_ z  e.  B  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  z ) )  =  A ) )
5954, 58sylan2 471 . . . 4  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A )  <-> 
( iota_ z  e.  B  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  z ) )  =  A ) )
6053, 59bitr4d 256 . . 3  |-  ( ( A  e.  B  /\  ( ph  /\  X  e.  Y ) )  -> 
( ( H `  X )  =  A  <->  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  O  /\  ( f ` 
1 )  =  X  /\  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( G  o.  f )  /\  (
g `  0 )  =  P ) ) ` 
1 )  =  A ) ) )
6160expcom 435 . 2  |-  ( (
ph  /\  X  e.  Y )  ->  ( A  e.  B  ->  ( ( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) ) )
6214, 44, 61pm5.21ndd 354 1  |-  ( (
ph  /\  X  e.  Y )  ->  (
( H `  X
)  =  A  <->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  O  /\  ( f `
 1 )  =  X  /\  ( (
iota_ g  e.  (
II  Cn  C )
( ( F  o.  g )  =  ( G  o.  f )  /\  ( g ` 
0 )  =  P ) ) `  1
)  =  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   E.wrex 2714   E!wreu 2715   U.cuni 4088    e. cmpt 4347    o. ccom 4840   -->wf 5411   ` cfv 5415   iota_crio 6048  (class class class)co 6090   0cc0 9278   1c1 9279   [,]cicc 11299    Cn ccn 18728  𝑛Locally cnlly 18969   IIcii 20351  PConcpcon 27022  SConcscon 27023   CovMap ccvm 27058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-ec 7099  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-ntr 18524  df-cls 18525  df-nei 18602  df-cn 18731  df-cnp 18732  df-cmp 18890  df-con 18916  df-lly 18970  df-nlly 18971  df-tx 19035  df-hmeo 19228  df-xms 19795  df-ms 19796  df-tms 19797  df-ii 20353  df-htpy 20442  df-phtpy 20443  df-phtpc 20464  df-pco 20477  df-pcon 27024  df-scon 27025  df-cvm 27059
This theorem is referenced by:  cvmlift3lem5  27126  cvmlift3lem6  27127  cvmlift3lem7  27128  cvmlift3lem9  27130
  Copyright terms: Public domain W3C validator