Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9 Structured version   Unicode version

Theorem cvmlift2lem9 27048
Description: Lemma for cvmlift2 27053. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
cvmlift2lem10.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
cvmlift2lem9.1  |-  ( ph  ->  ( X G Y )  e.  M )
cvmlift2lem9.2  |-  ( ph  ->  T  e.  ( S `
 M ) )
cvmlift2lem9.3  |-  ( ph  ->  U  e.  II )
cvmlift2lem9.4  |-  ( ph  ->  V  e.  II )
cvmlift2lem9.5  |-  ( ph  ->  ( IIt  U )  e.  Con )
cvmlift2lem9.6  |-  ( ph  ->  ( IIt  V )  e.  Con )
cvmlift2lem9.7  |-  ( ph  ->  X  e.  U )
cvmlift2lem9.8  |-  ( ph  ->  Y  e.  V )
cvmlift2lem9.9  |-  ( ph  ->  ( U  X.  V
)  C_  ( `' G " M ) )
cvmlift2lem9.10  |-  ( ph  ->  Z  e.  V )
cvmlift2lem9.11  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z } ) )  Cn  C ) )
cvmlift2lem9.w  |-  W  =  ( iota_ b  e.  T  ( X K Y )  e.  b )
Assertion
Ref Expression
cvmlift2lem9  |-  ( ph  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
Distinct variable groups:    b, c,
d, f, k, s, x, y, z, F    ph, b, f, x, y, z    M, b, c, d, k, s, x, y, z    S, b, f, x, y, z    J, b, c, d, f, k, s, x, y, z    T, b, c, d, s   
z, U    G, b,
c, f, k, x, y, z    W, c, d    H, b, c, f, x, y, z    X, b, c, d, f, k, x, y, z    z, Z    C, b, c, d, f, k, s, x, y, z    P, f, k, x, y, z    B, b, c, d, x, y, z    Y, b, c, d, f, k, x, y, z    K, b, c, d, f, x, y, z
Allowed substitution hints:    ph( k, s, c, d)    B( f, k, s)    P( s, b, c, d)    S( k, s, c, d)    T( x, y, z, f, k)    U( x, y, f, k, s, b, c, d)    G( s, d)    H( k, s, d)    K( k, s)    M( f)    V( x, y, z, f, k, s, b, c, d)    W( x, y, z, f, k, s, b)    X( s)    Y( s)    Z( x, y, f, k, s, b, c, d)

Proof of Theorem cvmlift2lem9
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2  |-  B  = 
U. C
2 iitop 20298 . . 3  |-  II  e.  Top
3 iiuni 20299 . . 3  |-  ( 0 [,] 1 )  = 
U. II
42, 2, 3, 3txunii 19008 . 2  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
5 cvmlift2lem10.s . 2  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c )
Homeo ( Jt  k ) ) ) ) } )
6 cvmlift2.f . 2  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
7 cvmlift2.g . . 3  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
8 cvmlift2.p . . 3  |-  ( ph  ->  P  e.  B )
9 cvmlift2.i . . 3  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
10 cvmlift2.h . . 3  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
11 cvmlift2.k . . 3  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
121, 6, 7, 8, 9, 10, 11cvmlift2lem5 27044 . 2  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
131, 6, 7, 8, 9, 10, 11cvmlift2lem7 27046 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  G )
1413, 7eqeltrd 2507 . 2  |-  ( ph  ->  ( F  o.  K
)  e.  ( ( II  tX  II )  Cn  J ) )
152, 2txtopi 19005 . . 3  |-  ( II 
tX  II )  e. 
Top
1615a1i 11 . 2  |-  ( ph  ->  ( II  tX  II )  e.  Top )
17 cvmlift2lem9.3 . . . . 5  |-  ( ph  ->  U  e.  II )
18 elssuni 4109 . . . . . 6  |-  ( U  e.  II  ->  U  C_ 
U. II )
1918, 3syl6sseqr 3391 . . . . 5  |-  ( U  e.  II  ->  U  C_  ( 0 [,] 1
) )
2017, 19syl 16 . . . 4  |-  ( ph  ->  U  C_  ( 0 [,] 1 ) )
21 cvmlift2lem9.7 . . . 4  |-  ( ph  ->  X  e.  U )
2220, 21sseldd 3345 . . 3  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
23 cvmlift2lem9.4 . . . . 5  |-  ( ph  ->  V  e.  II )
24 elssuni 4109 . . . . . 6  |-  ( V  e.  II  ->  V  C_ 
U. II )
2524, 3syl6sseqr 3391 . . . . 5  |-  ( V  e.  II  ->  V  C_  ( 0 [,] 1
) )
2623, 25syl 16 . . . 4  |-  ( ph  ->  V  C_  ( 0 [,] 1 ) )
27 cvmlift2lem9.8 . . . 4  |-  ( ph  ->  Y  e.  V )
2826, 27sseldd 3345 . . 3  |-  ( ph  ->  Y  e.  ( 0 [,] 1 ) )
29 opelxpi 4858 . . 3  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  <. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
3022, 28, 29syl2anc 654 . 2  |-  ( ph  -> 
<. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
31 cvmlift2lem9.2 . 2  |-  ( ph  ->  T  e.  ( S `
 M ) )
3212, 22, 28fovrnd 6224 . . . 4  |-  ( ph  ->  ( X K Y )  e.  B )
33 fvco3 5756 . . . . . . . 8  |-  ( ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B  /\  <. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  K ) `  <. X ,  Y >. )  =  ( F `  ( K `  <. X ,  Y >. ) ) )
3412, 30, 33syl2anc 654 . . . . . . 7  |-  ( ph  ->  ( ( F  o.  K ) `  <. X ,  Y >. )  =  ( F `  ( K `  <. X ,  Y >. ) ) )
3513fveq1d 5681 . . . . . . 7  |-  ( ph  ->  ( ( F  o.  K ) `  <. X ,  Y >. )  =  ( G `  <. X ,  Y >. ) )
3634, 35eqtr3d 2467 . . . . . 6  |-  ( ph  ->  ( F `  ( K `  <. X ,  Y >. ) )  =  ( G `  <. X ,  Y >. )
)
37 df-ov 6083 . . . . . . 7  |-  ( X K Y )  =  ( K `  <. X ,  Y >. )
3837fveq2i 5682 . . . . . 6  |-  ( F `
 ( X K Y ) )  =  ( F `  ( K `  <. X ,  Y >. ) )
39 df-ov 6083 . . . . . 6  |-  ( X G Y )  =  ( G `  <. X ,  Y >. )
4036, 38, 393eqtr4g 2490 . . . . 5  |-  ( ph  ->  ( F `  ( X K Y ) )  =  ( X G Y ) )
41 cvmlift2lem9.1 . . . . 5  |-  ( ph  ->  ( X G Y )  e.  M )
4240, 41eqeltrd 2507 . . . 4  |-  ( ph  ->  ( F `  ( X K Y ) )  e.  M )
43 cvmlift2lem9.w . . . . 5  |-  W  =  ( iota_ b  e.  T  ( X K Y )  e.  b )
445, 1, 43cvmsiota 27014 . . . 4  |-  ( ( F  e.  ( C CovMap  J )  /\  ( T  e.  ( S `  M )  /\  ( X K Y )  e.  B  /\  ( F `
 ( X K Y ) )  e.  M ) )  -> 
( W  e.  T  /\  ( X K Y )  e.  W ) )
456, 31, 32, 42, 44syl13anc 1213 . . 3  |-  ( ph  ->  ( W  e.  T  /\  ( X K Y )  e.  W ) )
4637eleq1i 2496 . . . 4  |-  ( ( X K Y )  e.  W  <->  ( K `  <. X ,  Y >. )  e.  W )
4746anbi2i 687 . . 3  |-  ( ( W  e.  T  /\  ( X K Y )  e.  W )  <->  ( W  e.  T  /\  ( K `  <. X ,  Y >. )  e.  W
) )
4845, 47sylib 196 . 2  |-  ( ph  ->  ( W  e.  T  /\  ( K `  <. X ,  Y >. )  e.  W ) )
49 xpss12 4932 . . 3  |-  ( ( U  C_  ( 0 [,] 1 )  /\  V  C_  ( 0 [,] 1 ) )  -> 
( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
5020, 26, 49syl2anc 654 . 2  |-  ( ph  ->  ( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
51 snidg 3891 . . . . . . 7  |-  ( m  e.  U  ->  m  e.  { m } )
5251ad2antrl 720 . . . . . 6  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  m  e.  { m } )
53 simprr 749 . . . . . 6  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  n  e.  V )
54 ovres 6219 . . . . . 6  |-  ( ( m  e.  { m }  /\  n  e.  V
)  ->  ( m
( K  |`  ( { m }  X.  V ) ) n )  =  ( m K n ) )
5552, 53, 54syl2anc 654 . . . . 5  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) n )  =  ( m K n ) )
56 eqid 2433 . . . . . . . 8  |-  U. (
( II  tX  II )t  ( { m }  X.  V ) )  = 
U. ( ( II 
tX  II )t  ( { m }  X.  V
) )
572a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  II  e.  Top )
58 snex 4521 . . . . . . . . . . 11  |-  { m }  e.  _V
5958a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  { m }  e.  _V )
6023adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  V  e.  II )
61 txrest 19046 . . . . . . . . . 10  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( { m }  e.  _V  /\  V  e.  II ) )  -> 
( ( II  tX  II )t  ( { m }  X.  V ) )  =  ( ( IIt  {
m } )  tX  ( IIt  V ) ) )
6257, 57, 59, 60, 61syl22anc 1212 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( II  tX  II )t  ( { m }  X.  V ) )  =  ( ( IIt  {
m } )  tX  ( IIt  V ) ) )
63 iitopon 20297 . . . . . . . . . . . 12  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
6420sselda 3344 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  U )  ->  m  e.  ( 0 [,] 1
) )
6564adantrr 709 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  m  e.  ( 0 [,] 1 ) )
66 restsn2 18617 . . . . . . . . . . . 12  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  m  e.  ( 0 [,] 1
) )  ->  (
IIt  { m } )  =  ~P { m } )
6763, 65, 66sylancr 656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( IIt  { m } )  =  ~P { m } )
68 pwsn 4073 . . . . . . . . . . . 12  |-  ~P {
m }  =  { (/)
,  { m } }
69 indiscon 18864 . . . . . . . . . . . 12  |-  { (/) ,  { m } }  e.  Con
7068, 69eqeltri 2503 . . . . . . . . . . 11  |-  ~P {
m }  e.  Con
7167, 70syl6eqel 2521 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( IIt  { m } )  e.  Con )
72 cvmlift2lem9.6 . . . . . . . . . . 11  |-  ( ph  ->  ( IIt  V )  e.  Con )
7372adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( IIt  V )  e.  Con )
74 txcon 19104 . . . . . . . . . 10  |-  ( ( ( IIt  { m } )  e.  Con  /\  (
IIt 
V )  e.  Con )  ->  ( ( IIt  {
m } )  tX  ( IIt  V ) )  e. 
Con )
7571, 73, 74syl2anc 654 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( IIt  { m } )  tX  (
IIt 
V ) )  e. 
Con )
7662, 75eqeltrd 2507 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( II  tX  II )t  ( { m }  X.  V ) )  e.  Con )
771, 6, 7, 8, 9, 10, 11cvmlift2lem6 27045 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { m }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )  Cn  C ) )
7865, 77syldan 467 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
7926adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  V  C_  ( 0 [,] 1 ) )
80 xpss2 4936 . . . . . . . . . . . . 13  |-  ( V 
C_  ( 0 [,] 1 )  ->  ( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) ) )
8179, 80syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) ) )
8265snssd 4006 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  { m }  C_  ( 0 [,] 1
) )
83 xpss1 4935 . . . . . . . . . . . . . 14  |-  ( { m }  C_  (
0 [,] 1 )  ->  ( { m }  X.  ( 0 [,] 1 ) )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
8482, 83syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  ( 0 [,] 1
) )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
854restuni 18608 . . . . . . . . . . . . 13  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { m }  X.  ( 0 [,] 1
) )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( {
m }  X.  (
0 [,] 1 ) )  =  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) ) )
8615, 84, 85sylancr 656 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  ( 0 [,] 1
) )  =  U. ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1 ) ) ) )
8781, 86sseqtrd 3380 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) ) )
88 eqid 2433 . . . . . . . . . . . 12  |-  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )  = 
U. ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )
8988cnrest 18731 . . . . . . . . . . 11  |-  ( ( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )  Cn  C
)  /\  ( {
m }  X.  V
)  C_  U. (
( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) ) )  ->  ( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
) )
9078, 87, 89syl2anc 654 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
) )
91 resabs1 5127 . . . . . . . . . . 11  |-  ( ( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) )  ->  (
( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  =  ( K  |`  ( { m }  X.  V ) ) )
9281, 91syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  ( 0 [,] 1
) ) )  |`  ( { m }  X.  V ) )  =  ( K  |`  ( { m }  X.  V ) ) )
9315a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( II  tX  II )  e.  Top )
94 ovex 6105 . . . . . . . . . . . . . 14  |-  ( 0 [,] 1 )  e. 
_V
9558, 94xpex 6497 . . . . . . . . . . . . 13  |-  ( { m }  X.  (
0 [,] 1 ) )  e.  _V
9695a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  ( 0 [,] 1
) )  e.  _V )
97 restabs 18611 . . . . . . . . . . . 12  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { m }  X.  V )  C_  ( { m }  X.  ( 0 [,] 1
) )  /\  ( { m }  X.  ( 0 [,] 1
) )  e.  _V )  ->  ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  =  ( ( II  tX  II )t  ( { m }  X.  V ) ) )
9893, 81, 96, 97syl3anc 1211 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( ( II 
tX  II )t  ( { m }  X.  (
0 [,] 1 ) ) )t  ( { m }  X.  V ) )  =  ( ( II 
tX  II )t  ( { m }  X.  V
) ) )
9998oveq1d 6095 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( ( ( II  tX  II )t  ( { m }  X.  ( 0 [,] 1
) ) )t  ( { m }  X.  V
) )  Cn  C
)  =  ( ( ( II  tX  II )t  ( { m }  X.  V ) )  Cn  C ) )
10090, 92, 993eltr3d 2513 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  C
) )
101 cvmtop1 26997 . . . . . . . . . . . . 13  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
1026, 101syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  Top )
103102adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  C  e.  Top )
1041toptopon 18380 . . . . . . . . . . 11  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
105103, 104sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  C  e.  (TopOn `  B
) )
106 df-ima 4840 . . . . . . . . . . 11  |-  ( K
" ( { m }  X.  V ) )  =  ran  ( K  |`  ( { m }  X.  V ) )
107 simprl 748 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  m  e.  U )
108107snssd 4006 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  { m }  C_  U )
109 xpss1 4935 . . . . . . . . . . . . . 14  |-  ( { m }  C_  U  ->  ( { m }  X.  V )  C_  ( U  X.  V ) )
110108, 109syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  ( U  X.  V ) )
111 imass2 5192 . . . . . . . . . . . . 13  |-  ( ( { m }  X.  V )  C_  ( U  X.  V )  -> 
( K " ( { m }  X.  V ) )  C_  ( K " ( U  X.  V ) ) )
112110, 111syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K " ( { m }  X.  V ) )  C_  ( K " ( U  X.  V ) ) )
113 cvmlift2lem9.9 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  X.  V
)  C_  ( `' G " M ) )
114 imaco 5331 . . . . . . . . . . . . . . . 16  |-  ( ( `' K  o.  `' F ) " M
)  =  ( `' K " ( `' F " M ) )
115 cnvco 5012 . . . . . . . . . . . . . . . . . 18  |-  `' ( F  o.  K )  =  ( `' K  o.  `' F )
11613cnveqd 5002 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  `' ( F  o.  K )  =  `' G )
117115, 116syl5eqr 2479 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( `' K  o.  `' F )  =  `' G )
118117imaeq1d 5156 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( `' K  o.  `' F ) " M
)  =  ( `' G " M ) )
119114, 118syl5eqr 2479 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( `' K "
( `' F " M ) )  =  ( `' G " M ) )
120113, 119sseqtr4d 3381 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  X.  V
)  C_  ( `' K " ( `' F " M ) ) )
121 ffun 5549 . . . . . . . . . . . . . . . 16  |-  ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B  ->  Fun  K )
12212, 121syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Fun  K )
123 fdm 5551 . . . . . . . . . . . . . . . . 17  |-  ( K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B  ->  dom  K  =  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
12412, 123syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  K  =  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
12550, 124sseqtr4d 3381 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  X.  V
)  C_  dom  K )
126 funimass3 5807 . . . . . . . . . . . . . . 15  |-  ( ( Fun  K  /\  ( U  X.  V )  C_  dom  K )  ->  (
( K " ( U  X.  V ) ) 
C_  ( `' F " M )  <->  ( U  X.  V )  C_  ( `' K " ( `' F " M ) ) ) )
127122, 125, 126syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( K "
( U  X.  V
) )  C_  ( `' F " M )  <-> 
( U  X.  V
)  C_  ( `' K " ( `' F " M ) ) ) )
128120, 127mpbird 232 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K " ( U  X.  V ) ) 
C_  ( `' F " M ) )
129128adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K " ( U  X.  V ) ) 
C_  ( `' F " M ) )
130112, 129sstrd 3354 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K " ( { m }  X.  V ) )  C_  ( `' F " M ) )
131106, 130syl5eqssr 3389 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  ran  ( K  |`  ( { m }  X.  V ) )  C_  ( `' F " M ) )
132 cnvimass 5177 . . . . . . . . . . . 12  |-  ( `' F " M ) 
C_  dom  F
133 cvmcn 26999 . . . . . . . . . . . . . . 15  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
1346, 133syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( C  Cn  J ) )
135 eqid 2433 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
1361, 135cnf 18692 . . . . . . . . . . . . . 14  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
137134, 136syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F : B --> U. J
)
138 fdm 5551 . . . . . . . . . . . . 13  |-  ( F : B --> U. J  ->  dom  F  =  B )
139137, 138syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =  B )
140132, 139syl5sseq 3392 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F " M )  C_  B
)
141140adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( `' F " M )  C_  B
)
142 cnrest2 18732 . . . . . . . . . 10  |-  ( ( C  e.  (TopOn `  B )  /\  ran  ( K  |`  ( { m }  X.  V
) )  C_  ( `' F " M )  /\  ( `' F " M )  C_  B
)  ->  ( ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II  tX  II )t  ( { m }  X.  V ) )  Cn  C )  <->  ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
143105, 131, 141, 142syl3anc 1211 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
144100, 143mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { m }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) )
1455cvmsss 27004 . . . . . . . . . . . 12  |-  ( T  e.  ( S `  M )  ->  T  C_  C )
14631, 145syl 16 . . . . . . . . . . 11  |-  ( ph  ->  T  C_  C )
14745simpld 456 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  T )
148146, 147sseldd 3345 . . . . . . . . . 10  |-  ( ph  ->  W  e.  C )
149 elssuni 4109 . . . . . . . . . . . 12  |-  ( W  e.  T  ->  W  C_ 
U. T )
150147, 149syl 16 . . . . . . . . . . 11  |-  ( ph  ->  W  C_  U. T )
1515cvmsuni 27006 . . . . . . . . . . . 12  |-  ( T  e.  ( S `  M )  ->  U. T  =  ( `' F " M ) )
15231, 151syl 16 . . . . . . . . . . 11  |-  ( ph  ->  U. T  =  ( `' F " M ) )
153150, 152sseqtrd 3380 . . . . . . . . . 10  |-  ( ph  ->  W  C_  ( `' F " M ) )
1545cvmsrcl 27001 . . . . . . . . . . . . 13  |-  ( T  e.  ( S `  M )  ->  M  e.  J )
15531, 154syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  J )
156 cnima 18711 . . . . . . . . . . . 12  |-  ( ( F  e.  ( C  Cn  J )  /\  M  e.  J )  ->  ( `' F " M )  e.  C
)
157134, 155, 156syl2anc 654 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F " M )  e.  C
)
158 restopn2 18623 . . . . . . . . . . 11  |-  ( ( C  e.  Top  /\  ( `' F " M )  e.  C )  -> 
( W  e.  ( Ct  ( `' F " M ) )  <->  ( W  e.  C  /\  W  C_  ( `' F " M ) ) ) )
159102, 157, 158syl2anc 654 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  ( Ct  ( `' F " M ) )  <->  ( W  e.  C  /\  W  C_  ( `' F " M ) ) ) )
160148, 153, 159mpbir2and 906 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Ct  ( `' F " M ) ) )
161160adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  W  e.  ( Ct  ( `' F " M ) ) )
1625cvmscld 27010 . . . . . . . . . 10  |-  ( ( F  e.  ( C CovMap  J )  /\  T  e.  ( S `  M
)  /\  W  e.  T )  ->  W  e.  ( Clsd `  ( Ct  ( `' F " M ) ) ) )
1636, 31, 147, 162syl3anc 1211 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( Clsd `  ( Ct  ( `' F " M ) ) ) )
164163adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  W  e.  ( Clsd `  ( Ct  ( `' F " M ) ) ) )
165 cvmlift2lem9.10 . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  V )
166165adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  Z  e.  V )
167 opelxpi 4858 . . . . . . . . . 10  |-  ( ( m  e.  { m }  /\  Z  e.  V
)  ->  <. m ,  Z >.  e.  ( { m }  X.  V ) )
16852, 166, 167syl2anc 654 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  <. m ,  Z >.  e.  ( { m }  X.  V ) )
16981, 84sstrd 3354 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
1704restuni 18608 . . . . . . . . . 10  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { m }  X.  V )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( {
m }  X.  V
)  =  U. (
( II  tX  II )t  ( { m }  X.  V ) ) )
17115, 169, 170sylancr 656 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( { m }  X.  V )  =  U. ( ( II  tX  II )t  ( { m }  X.  V ) ) )
172168, 171eleqtrd 2509 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  <. m ,  Z >.  e. 
U. ( ( II 
tX  II )t  ( { m }  X.  V
) ) )
173 df-ov 6083 . . . . . . . . . 10  |-  ( m ( K  |`  ( { m }  X.  V ) ) Z )  =  ( ( K  |`  ( {
m }  X.  V
) ) `  <. m ,  Z >. )
174 ovres 6219 . . . . . . . . . . . 12  |-  ( ( m  e.  { m }  /\  Z  e.  V
)  ->  ( m
( K  |`  ( { m }  X.  V ) ) Z )  =  ( m K Z ) )
17552, 166, 174syl2anc 654 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) Z )  =  ( m K Z ) )
176 snidg 3891 . . . . . . . . . . . . . 14  |-  ( Z  e.  V  ->  Z  e.  { Z } )
177165, 176syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  Z  e.  { Z } )
178177adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  ->  Z  e.  { Z } )
179 ovres 6219 . . . . . . . . . . . 12  |-  ( ( m  e.  U  /\  Z  e.  { Z } )  ->  (
m ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( m K Z ) )
180107, 178, 179syl2anc 654 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( m K Z ) )
181175, 180eqtr4d 2468 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) Z )  =  ( m ( K  |`  ( U  X.  { Z }
) ) Z ) )
182173, 181syl5eqr 2479 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) ) `  <. m ,  Z >. )  =  ( m ( K  |`  ( U  X.  { Z } ) ) Z ) )
183 eqid 2433 . . . . . . . . . . . . 13  |-  U. (
( II  tX  II )t  ( U  X.  { Z } ) )  = 
U. ( ( II 
tX  II )t  ( U  X.  { Z }
) )
1842a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  II  e.  Top )
185 snex 4521 . . . . . . . . . . . . . . . 16  |-  { Z }  e.  _V
186185a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { Z }  e.  _V )
187 txrest 19046 . . . . . . . . . . . . . . 15  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( U  e.  II  /\  { Z }  e.  _V ) )  ->  (
( II  tX  II )t  ( U  X.  { Z } ) )  =  ( ( IIt  U ) 
tX  ( IIt  { Z } ) ) )
188184, 184, 17, 186, 187syl22anc 1212 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( II  tX  II )t  ( U  X.  { Z } ) )  =  ( ( IIt  U )  tX  ( IIt  { Z } ) ) )
189 cvmlift2lem9.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( IIt  U )  e.  Con )
19026, 165sseldd 3345 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  Z  e.  ( 0 [,] 1 ) )
191 restsn2 18617 . . . . . . . . . . . . . . . . 17  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  Z  e.  ( 0 [,] 1
) )  ->  (
IIt  { Z } )  =  ~P { Z }
)
19263, 190, 191sylancr 656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( IIt  { Z } )  =  ~P { Z } )
193 pwsn 4073 . . . . . . . . . . . . . . . . 17  |-  ~P { Z }  =  { (/)
,  { Z } }
194 indiscon 18864 . . . . . . . . . . . . . . . . 17  |-  { (/) ,  { Z } }  e.  Con
195193, 194eqeltri 2503 . . . . . . . . . . . . . . . 16  |-  ~P { Z }  e.  Con
196192, 195syl6eqel 2521 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( IIt  { Z } )  e.  Con )
197 txcon 19104 . . . . . . . . . . . . . . 15  |-  ( ( ( IIt  U )  e.  Con  /\  ( IIt  { Z } )  e.  Con )  -> 
( ( IIt  U ) 
tX  ( IIt  { Z } ) )  e. 
Con )
198189, 196, 197syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( IIt  U ) 
tX  ( IIt  { Z } ) )  e. 
Con )
199188, 198eqeltrd 2507 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( II  tX  II )t  ( U  X.  { Z } ) )  e.  Con )
200 cvmlift2lem9.11 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z } ) )  Cn  C ) )
201102, 104sylib 196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  e.  (TopOn `  B ) )
202 df-ima 4840 . . . . . . . . . . . . . . . 16  |-  ( K
" ( U  X.  { Z } ) )  =  ran  ( K  |`  ( U  X.  { Z } ) )
203165snssd 4006 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  { Z }  C_  V )
204 xpss2 4936 . . . . . . . . . . . . . . . . . . 19  |-  ( { Z }  C_  V  ->  ( U  X.  { Z } )  C_  ( U  X.  V ) )
205203, 204syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U  X.  { Z } )  C_  ( U  X.  V ) )
206 imass2 5192 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  X.  { Z } )  C_  ( U  X.  V )  -> 
( K " ( U  X.  { Z }
) )  C_  ( K " ( U  X.  V ) ) )
207205, 206syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K " ( U  X.  { Z }
) )  C_  ( K " ( U  X.  V ) ) )
208207, 128sstrd 3354 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K " ( U  X.  { Z }
) )  C_  ( `' F " M ) )
209202, 208syl5eqssr 3389 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  ( K  |`  ( U  X.  { Z } ) )  C_  ( `' F " M ) )
210 cnrest2 18732 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  (TopOn `  B )  /\  ran  ( K  |`  ( U  X.  { Z }
) )  C_  ( `' F " M )  /\  ( `' F " M )  C_  B
)  ->  ( ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z }
) )  Cn  C
)  <->  ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Z }
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
211201, 209, 140, 210syl3anc 1211 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Z }
) )  Cn  C
)  <->  ( K  |`  ( U  X.  { Z } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Z }
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
212200, 211mpbid 210 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Z } ) )  Cn  ( Ct  ( `' F " M ) ) ) )
213 opelxpi 4858 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  U  /\  Z  e.  { Z } )  ->  <. X ,  Z >.  e.  ( U  X.  { Z }
) )
21421, 177, 213syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  -> 
<. X ,  Z >.  e.  ( U  X.  { Z } ) )
215190snssd 4006 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  { Z }  C_  ( 0 [,] 1
) )
216 xpss12 4932 . . . . . . . . . . . . . . . 16  |-  ( ( U  C_  ( 0 [,] 1 )  /\  { Z }  C_  (
0 [,] 1 ) )  ->  ( U  X.  { Z } ) 
C_  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
21720, 215, 216syl2anc 654 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U  X.  { Z } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
2184restuni 18608 . . . . . . . . . . . . . . 15  |-  ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  { Z }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( U  X.  { Z } )  = 
U. ( ( II 
tX  II )t  ( U  X.  { Z }
) ) )
21915, 217, 218sylancr 656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  X.  { Z } )  =  U. ( ( II  tX  II )t  ( U  X.  { Z } ) ) )
220214, 219eleqtrd 2509 . . . . . . . . . . . . 13  |-  ( ph  -> 
<. X ,  Z >.  e. 
U. ( ( II 
tX  II )t  ( U  X.  { Z }
) ) )
221 df-ov 6083 . . . . . . . . . . . . . . 15  |-  ( X ( K  |`  ( U  X.  { Z }
) ) Z )  =  ( ( K  |`  ( U  X.  { Z } ) ) `  <. X ,  Z >. )
222 ovres 6219 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  U  /\  Z  e.  { Z } )  ->  ( X ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( X K Z ) )
22321, 177, 222syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( X K Z ) )
224 snidg 3891 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  U  ->  X  e.  { X } )
22521, 224syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  { X } )
226 ovres 6219 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  { X }  /\  Z  e.  V
)  ->  ( X
( K  |`  ( { X }  X.  V
) ) Z )  =  ( X K Z ) )
227225, 165, 226syl2anc 654 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( X ( K  |`  ( { X }  X.  V ) ) Z )  =  ( X K Z ) )
228223, 227eqtr4d 2468 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X ( K  |`  ( U  X.  { Z } ) ) Z )  =  ( X ( K  |`  ( { X }  X.  V
) ) Z ) )
229221, 228syl5eqr 2479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) ) `  <. X ,  Z >. )  =  ( X ( K  |`  ( { X }  X.  V
) ) Z ) )
230 eqid 2433 . . . . . . . . . . . . . . . . 17  |-  U. (
( II  tX  II )t  ( { X }  X.  V ) )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  V
) )
231 snex 4521 . . . . . . . . . . . . . . . . . . . 20  |-  { X }  e.  _V
232231a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  { X }  e.  _V )
233 txrest 19046 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( { X }  e.  _V  /\  V  e.  II ) )  -> 
( ( II  tX  II )t  ( { X }  X.  V ) )  =  ( ( IIt  { X } )  tX  (
IIt 
V ) ) )
234184, 184, 232, 23, 233syl22anc 1212 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( II  tX  II )t  ( { X }  X.  V ) )  =  ( ( IIt  { X } )  tX  (
IIt 
V ) ) )
235 restsn2 18617 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  X  e.  ( 0 [,] 1
) )  ->  (
IIt  { X } )  =  ~P { X }
)
23663, 22, 235sylancr 656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( IIt  { X } )  =  ~P { X } )
237 pwsn 4073 . . . . . . . . . . . . . . . . . . . . 21  |-  ~P { X }  =  { (/)
,  { X } }
238 indiscon 18864 . . . . . . . . . . . . . . . . . . . . 21  |-  { (/) ,  { X } }  e.  Con
239237, 238eqeltri 2503 . . . . . . . . . . . . . . . . . . . 20  |-  ~P { X }  e.  Con
240236, 239syl6eqel 2521 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( IIt  { X } )  e.  Con )
241 txcon 19104 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( IIt  { X } )  e.  Con  /\  (
IIt 
V )  e.  Con )  ->  ( ( IIt  { X } )  tX  (
IIt 
V ) )  e. 
Con )
242240, 72, 241syl2anc 654 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( IIt  { X } )  tX  (
IIt 
V ) )  e. 
Con )
243234, 242eqeltrd 2507 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( II  tX  II )t  ( { X }  X.  V ) )  e.  Con )
2441, 6, 7, 8, 9, 10, 11cvmlift2lem6 27045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )  Cn  C
) )
24522, 244mpdan 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K  |`  ( { X }  X.  (
0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) )  Cn  C ) )
246 xpss2 4936 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( V 
C_  ( 0 [,] 1 )  ->  ( { X }  X.  V
)  C_  ( { X }  X.  (
0 [,] 1 ) ) )
24726, 246syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( { X }  X.  V )  C_  ( { X }  X.  (
0 [,] 1 ) ) )
24822snssd 4006 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { X }  C_  ( 0 [,] 1
) )
249 xpss1 4935 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { X }  C_  (
0 [,] 1 )  ->  ( { X }  X.  ( 0 [,] 1 ) )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
250248, 249syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( { X }  X.  ( 0 [,] 1
) )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
2514restuni 18608 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { X }  X.  (
0 [,] 1 ) )  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( { X }  X.  ( 0 [,] 1 ) )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) ) )
25215, 250, 251sylancr 656 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( { X }  X.  ( 0 [,] 1
) )  =  U. ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) ) )
253247, 252sseqtrd 3380 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( { X }  X.  V )  C_  U. (
( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) ) )
254 eqid 2433 . . . . . . . . . . . . . . . . . . . . 21  |-  U. (
( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )
255254cnrest 18731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( K  |`  ( { X }  X.  (
0 [,] 1 ) ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  ( 0 [,] 1 ) ) )  Cn  C )  /\  ( { X }  X.  V )  C_  U. (
( II  tX  II )t  ( { X }  X.  ( 0 [,] 1
) ) ) )  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C ) )
256245, 253, 255syl2anc 654 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C ) )
257 resabs1 5127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { X }  X.  V )  C_  ( { X }  X.  (
0 [,] 1 ) )  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1 ) ) )  |`  ( { X }  X.  V ) )  =  ( K  |`  ( { X }  X.  V
) ) )
258247, 257syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  ( 0 [,] 1
) ) )  |`  ( { X }  X.  V ) )  =  ( K  |`  ( { X }  X.  V
) ) )
259231, 94xpex 6497 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { X }  X.  (
0 [,] 1 ) )  e.  _V
260259a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( { X }  X.  ( 0 [,] 1
) )  e.  _V )
261 restabs 18611 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { X }  X.  V
)  C_  ( { X }  X.  (
0 [,] 1 ) )  /\  ( { X }  X.  (
0 [,] 1 ) )  e.  _V )  ->  ( ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  =  ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
26216, 247, 260, 261syl3anc 1211 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( II 
tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  =  ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
263262oveq1d 6095 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( ( II  tX  II )t  ( { X }  X.  (
0 [,] 1 ) ) )t  ( { X }  X.  V ) )  Cn  C )  =  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  C
) )
264256, 258, 2633eltr3d 2513 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  V ) )  Cn  C ) )
265 df-ima 4840 . . . . . . . . . . . . . . . . . . . 20  |-  ( K
" ( { X }  X.  V ) )  =  ran  ( K  |`  ( { X }  X.  V ) )
26621snssd 4006 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  { X }  C_  U )
267 xpss1 4935 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( { X }  C_  U  ->  ( { X }  X.  V )  C_  ( U  X.  V ) )
268266, 267syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( { X }  X.  V )  C_  ( U  X.  V ) )
269 imass2 5192 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( { X }  X.  V )  C_  ( U  X.  V )  -> 
( K " ( { X }  X.  V
) )  C_  ( K " ( U  X.  V ) ) )
270268, 269syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( K " ( { X }  X.  V
) )  C_  ( K " ( U  X.  V ) ) )
271270, 128sstrd 3354 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( K " ( { X }  X.  V
) )  C_  ( `' F " M ) )
272265, 271syl5eqssr 3389 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ran  ( K  |`  ( { X }  X.  V ) )  C_  ( `' F " M ) )
273 cnrest2 18732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  (TopOn `  B )  /\  ran  ( K  |`  ( { X }  X.  V
) )  C_  ( `' F " M )  /\  ( `' F " M )  C_  B
)  ->  ( ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
274201, 272, 140, 273syl3anc 1211 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  C
)  <->  ( K  |`  ( { X }  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( { X }  X.  V
) )  Cn  ( Ct  ( `' F " M ) ) ) ) )
275264, 274mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) )  e.  ( ( ( II  tX  II )t  ( { X }  X.  V ) )  Cn  ( Ct  ( `' F " M ) ) ) )
276 opelxpi 4858 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  { X }  /\  Y  e.  V
)  ->  <. X ,  Y >.  e.  ( { X }  X.  V
) )
277225, 27, 276syl2anc 654 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
<. X ,  Y >.  e.  ( { X }  X.  V ) )
278268, 50sstrd 3354 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( { X }  X.  V )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
2794restuni 18608 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( II  tX  II )  e.  Top  /\  ( { X }  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( { X }  X.  V )  = 
U. ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
28015, 278, 279sylancr 656 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( { X }  X.  V )  =  U. ( ( II  tX  II )t  ( { X }  X.  V ) ) )
281277, 280eleqtrd 2509 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
<. X ,  Y >.  e. 
U. ( ( II 
tX  II )t  ( { X }  X.  V
) ) )
282 df-ov 6083 . . . . . . . . . . . . . . . . . . 19  |-  ( X ( K  |`  ( { X }  X.  V
) ) Y )  =  ( ( K  |`  ( { X }  X.  V ) ) `  <. X ,  Y >. )
283 ovres 6219 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( X  e.  { X }  /\  Y  e.  V
)  ->  ( X
( K  |`  ( { X }  X.  V
) ) Y )  =  ( X K Y ) )
284225, 27, 283syl2anc 654 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X ( K  |`  ( { X }  X.  V ) ) Y )  =  ( X K Y ) )
285282, 284syl5eqr 2479 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) ) `  <. X ,  Y >. )  =  ( X K Y ) )
28645simprd 460 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( X K Y )  e.  W )
287285, 286eqeltrd 2507 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) ) `  <. X ,  Y >. )  e.  W )
288230, 243, 275, 160, 163, 281, 287concn 18872 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) ) : U. ( ( II  tX  II )t  ( { X }  X.  V ) ) --> W )
289280feq2d 5535 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( K  |`  ( { X }  X.  V ) ) : ( { X }  X.  V ) --> W  <->  ( K  |`  ( { X }  X.  V ) ) : U. ( ( II 
tX  II )t  ( { X }  X.  V
) ) --> W ) )
290288, 289mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( K  |`  ( { X }  X.  V
) ) : ( { X }  X.  V ) --> W )
291290, 225, 165fovrnd 6224 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X ( K  |`  ( { X }  X.  V ) ) Z )  e.  W )
292229, 291eqeltrd 2507 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) ) `  <. X ,  Z >. )  e.  W )
293183, 199, 212, 160, 163, 220, 292concn 18872 . . . . . . . . . . . 12  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) ) : U. ( ( II  tX  II )t  ( U  X.  { Z } ) ) --> W )
294219feq2d 5535 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( K  |`  ( U  X.  { Z } ) ) : ( U  X.  { Z } ) --> W  <->  ( K  |`  ( U  X.  { Z } ) ) : U. ( ( II 
tX  II )t  ( U  X.  { Z }
) ) --> W ) )
295293, 294mpbird 232 . . . . . . . . . . 11  |-  ( ph  ->  ( K  |`  ( U  X.  { Z }
) ) : ( U  X.  { Z } ) --> W )
296295adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( U  X.  { Z }
) ) : ( U  X.  { Z } ) --> W )
297296, 107, 178fovrnd 6224 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( U  X.  { Z } ) ) Z )  e.  W )
298182, 297eqeltrd 2507 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) ) `  <. m ,  Z >. )  e.  W )
29956, 76, 144, 161, 164, 172, 298concn 18872 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) ) : U. ( ( II 
tX  II )t  ( { m }  X.  V
) ) --> W )
300171feq2d 5535 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( ( K  |`  ( { m }  X.  V ) ) : ( { m }  X.  V ) --> W  <->  ( K  |`  ( { m }  X.  V ) ) : U. ( ( II 
tX  II )t  ( { m }  X.  V
) ) --> W ) )
301299, 300mpbird 232 . . . . . 6  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( K  |`  ( { m }  X.  V ) ) : ( { m }  X.  V ) --> W )
302301, 52, 53fovrnd 6224 . . . . 5  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m ( K  |`  ( { m }  X.  V ) ) n )  e.  W )
30355, 302eqeltrrd 2508 . . . 4  |-  ( (
ph  /\  ( m  e.  U  /\  n  e.  V ) )  -> 
( m K n )  e.  W )
304303ralrimivva 2798 . . 3  |-  ( ph  ->  A. m  e.  U  A. n  e.  V  ( m K n )  e.  W )
305 funimassov 6229 . . . 4  |-  ( ( Fun  K  /\  ( U  X.  V )  C_  dom  K )  ->  (
( K " ( U  X.  V ) ) 
C_  W  <->  A. m  e.  U  A. n  e.  V  ( m K n )  e.  W ) )
306122, 125, 305syl2anc 654 . . 3  |-  ( ph  ->  ( ( K "
( U  X.  V
) )  C_  W  <->  A. m  e.  U  A. n  e.  V  (
m K n )  e.  W ) )
307304, 306mpbird 232 . 2  |-  ( ph  ->  ( K " ( U  X.  V ) ) 
C_  W )
3081, 4, 5, 6, 12, 14, 16, 30, 31, 48, 50, 307cvmlift2lem9a 27040 1  |-  ( ph  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   {crab 2709   _Vcvv 2962    \ cdif 3313    i^i cin 3315    C_ wss 3316   (/)c0 3625   ~Pcpw 3848   {csn 3865   {cpr 3867   <.cop 3871   U.cuni 4079    e. cmpt 4338    X. cxp 4825   `'ccnv 4826   dom cdm 4827   ran crn 4828    |` cres 4829   "cima 4830    o. ccom 4831   Fun wfun 5400   -->wf 5402   ` cfv 5406   iota_crio 6038  (class class class)co 6080    e. cmpt2 6082   0cc0 9270   1c1 9271   [,]cicc 11291   ↾t crest 14342   Topctop 18340  TopOnctopon 18341   Clsdccld 18462    Cn ccn 18670   Conccon 18857    tX ctx 18975   Homeochmeo 19168   IIcii 20293   CovMap ccvm 26992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-ec 7091  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-cn 18673  df-cnp 18674  df-cmp 18832  df-con 18858  df-lly 18912  df-nlly 18913  df-tx 18977  df-hmeo 19170  df-xms 19737  df-ms 19738  df-tms 19739  df-ii 20295  df-htpy 20384  df-phtpy 20385  df-phtpc 20406  df-pcon 26958  df-scon 26959  df-cvm 26993
This theorem is referenced by:  cvmlift2lem10  27049
  Copyright terms: Public domain W3C validator