Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem7 Structured version   Unicode version

Theorem cvmlift2lem7 27167
Description: Lemma for cvmlift2 27174. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem7  |-  ( ph  ->  ( F  o.  K
)  =  G )
Distinct variable groups:    x, f,
y, z, F    ph, f, x, y, z    f, J, x, y, z    f, G, x, y, z    f, H, x, y, z    C, f, x, y, z    P, f, x, y, z    x, B, y, z    f, K, x, y, z
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2lem7
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . . 9  |-  B  = 
U. C
2 cvmlift2.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . . . . . . 9  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . . . . . . 9  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . . . . . . 9  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . . . . . . 9  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 eqid 2438 . . . . . . . . 9  |-  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) )  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) )
81, 2, 3, 4, 5, 6, 7cvmlift2lem3 27163 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 0 )  =  ( H `  x
) ) )
98adantrr 716 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) )  e.  ( II  Cn  C )  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ` 
0 )  =  ( H `  x ) ) )
109simp2d 1001 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( F  o.  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) ) )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) ) )
1110fveq1d 5688 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ) `
 y )  =  ( ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) ) `  y ) )
129simp1d 1000 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
) )
13 iiuni 20437 . . . . . . . 8  |-  ( 0 [,] 1 )  = 
U. II
1413, 1cnf 18830 . . . . . . 7  |-  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
)  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) : ( 0 [,] 1 ) --> B )
1512, 14syl 16 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) : ( 0 [,] 1
) --> B )
16 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
y  e.  ( 0 [,] 1 ) )
17 fvco3 5763 . . . . . 6  |-  ( ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) : ( 0 [,] 1
) --> B  /\  y  e.  ( 0 [,] 1
) )  ->  (
( F  o.  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) ) ) `  y )  =  ( F `  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
1815, 16, 17syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ) `
 y )  =  ( F `  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
19 oveq2 6094 . . . . . . 7  |-  ( z  =  y  ->  (
x G z )  =  ( x G y ) )
20 eqid 2438 . . . . . . 7  |-  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )
21 ovex 6111 . . . . . . 7  |-  ( x G y )  e. 
_V
2219, 20, 21fvmpt 5769 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) ) `  y
)  =  ( x G y ) )
2316, 22syl 16 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) ) `  y )  =  ( x G y ) )
2411, 18, 233eqtr3d 2478 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( F `  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) )  =  ( x G y ) )
25243impb 1183 . . 3  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) )  ->  ( F `  ( ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) ) `  y
) )  =  ( x G y ) )
2625mpt2eq3dva 6145 . 2  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( x G y ) ) )
2715, 16ffvelrnd 5839 . . 3  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y )  e.  B )
28 cvmlift2.k . . . 4  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
2928a1i 11 . . 3  |-  ( ph  ->  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
30 cvmcn 27120 . . . . 5  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
31 eqid 2438 . . . . . 6  |-  U. J  =  U. J
321, 31cnf 18830 . . . . 5  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> U. J )
332, 30, 323syl 20 . . . 4  |-  ( ph  ->  F : B --> U. J
)
3433feqmptd 5739 . . 3  |-  ( ph  ->  F  =  ( w  e.  B  |->  ( F `
 w ) ) )
35 fveq2 5686 . . 3  |-  ( w  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) `  y )  ->  ( F `  w )  =  ( F `  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y ) ) )
3627, 29, 34, 35fmpt2co 6651 . 2  |-  ( ph  ->  ( F  o.  K
)  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( F `
 ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) `  y ) ) ) )
37 iitop 20436 . . . . . 6  |-  II  e.  Top
3837, 37, 13, 13txunii 19146 . . . . 5  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
3938, 31cnf 18830 . . . 4  |-  ( G  e.  ( ( II 
tX  II )  Cn  J )  ->  G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J
)
40 ffn 5554 . . . 4  |-  ( G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
413, 39, 403syl 20 . . 3  |-  ( ph  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
42 fnov 6193 . . 3  |-  ( G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  <->  G  =  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( x G y ) ) )
4341, 42sylib 196 . 2  |-  ( ph  ->  G  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x G y ) ) )
4426, 36, 433eqtr4d 2480 1  |-  ( ph  ->  ( F  o.  K
)  =  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   U.cuni 4086    e. cmpt 4345    X. cxp 4833    o. ccom 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413   iota_crio 6046  (class class class)co 6086    e. cmpt2 6088   0cc0 9274   1c1 9275   [,]cicc 11295    Cn ccn 18808    tX ctx 19113   IIcii 20431   CovMap ccvm 27113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-ec 7095  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-sum 13156  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17789  df-xmet 17790  df-met 17791  df-bl 17792  df-mopn 17793  df-cnfld 17799  df-top 18483  df-bases 18485  df-topon 18486  df-topsp 18487  df-cld 18603  df-ntr 18604  df-cls 18605  df-nei 18682  df-cn 18811  df-cnp 18812  df-cmp 18970  df-con 18996  df-lly 19050  df-nlly 19051  df-tx 19115  df-hmeo 19308  df-xms 19875  df-ms 19876  df-tms 19877  df-ii 20433  df-htpy 20522  df-phtpy 20523  df-phtpc 20544  df-pcon 27079  df-scon 27080  df-cvm 27114
This theorem is referenced by:  cvmlift2lem9  27169  cvmlift2lem13  27173
  Copyright terms: Public domain W3C validator