Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem5 Structured version   Unicode version

Theorem cvmlift2lem5 28380
Description: Lemma for cvmlift2 28389. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem5  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
Distinct variable groups:    x, f,
y, z, F    ph, f, x, y, z    f, J, x, y, z    f, G, x, y, z    f, H, x, y, z    C, f, x, y, z    P, f, x, y, z    x, B, y, z    f, K, x, y, z
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2lem5
StepHypRef Expression
1 cvmlift2.b . . . . . . . 8  |-  B  = 
U. C
2 cvmlift2.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . . . . . 8  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . . . . . 8  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 eqid 2462 . . . . . . . 8  |-  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) )  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) )
81, 2, 3, 4, 5, 6, 7cvmlift2lem3 28378 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
)  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 0 )  =  ( H `  x
) ) )
98adantrr 716 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) )  e.  ( II  Cn  C )  /\  ( F  o.  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) ` 
0 )  =  ( H `  x ) ) )
109simp1d 1003 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
) )
11 iiuni 21115 . . . . . 6  |-  ( 0 [,] 1 )  = 
U. II
1211, 1cnf 19508 . . . . 5  |-  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) )  e.  ( II  Cn  C
)  ->  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( f `  0
)  =  ( H `
 x ) ) ) : ( 0 [,] 1 ) --> B )
1310, 12syl 16 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) : ( 0 [,] 1
) --> B )
14 simprr 756 . . . 4  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
y  e.  ( 0 [,] 1 ) )
1513, 14ffvelrnd 6015 . . 3  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y )  e.  B )
1615ralrimivva 2880 . 2  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y )  e.  B )
17 cvmlift2.k . . 3  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
1817fmpt2 6843 . 2  |-  ( A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y )  e.  B  <->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
1916, 18sylib 196 1  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2809   U.cuni 4240    |-> cmpt 4500    X. cxp 4992    o. ccom 4998   -->wf 5577   ` cfv 5581   iota_crio 6237  (class class class)co 6277    |-> cmpt2 6279   0cc0 9483   1c1 9484   [,]cicc 11523    Cn ccn 19486    tX ctx 19791   IIcii 21109   CovMap ccvm 28328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-iin 4323  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6517  df-om 6674  df-1st 6776  df-2nd 6777  df-supp 6894  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-ec 7305  df-map 7414  df-ixp 7462  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-fsupp 7821  df-fi 7862  df-sup 7892  df-oi 7926  df-card 8311  df-cda 8539  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-z 10856  df-dec 10968  df-uz 11074  df-q 11174  df-rp 11212  df-xneg 11309  df-xadd 11310  df-xmul 11311  df-ioo 11524  df-ico 11526  df-icc 11527  df-fz 11664  df-fzo 11784  df-fl 11888  df-seq 12066  df-exp 12125  df-hash 12363  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-clim 13262  df-sum 13460  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-ress 14488  df-plusg 14559  df-mulr 14560  df-starv 14561  df-sca 14562  df-vsca 14563  df-ip 14564  df-tset 14565  df-ple 14566  df-ds 14568  df-unif 14569  df-hom 14570  df-cco 14571  df-rest 14669  df-topn 14670  df-0g 14688  df-gsum 14689  df-topgen 14690  df-pt 14691  df-prds 14694  df-xrs 14748  df-qtop 14753  df-imas 14754  df-xps 14756  df-mre 14832  df-mrc 14833  df-acs 14835  df-mnd 15723  df-submnd 15773  df-mulg 15856  df-cntz 16145  df-cmn 16591  df-psmet 18177  df-xmet 18178  df-met 18179  df-bl 18180  df-mopn 18181  df-cnfld 18187  df-top 19161  df-bases 19163  df-topon 19164  df-topsp 19165  df-cld 19281  df-ntr 19282  df-cls 19283  df-nei 19360  df-cn 19489  df-cnp 19490  df-cmp 19648  df-con 19674  df-lly 19728  df-nlly 19729  df-tx 19793  df-hmeo 19986  df-xms 20553  df-ms 20554  df-tms 20555  df-ii 21111  df-htpy 21200  df-phtpy 21201  df-phtpc 21222  df-pcon 28294  df-scon 28295  df-cvm 28329
This theorem is referenced by:  cvmlift2lem6  28381  cvmlift2lem9  28384  cvmlift2lem11  28386  cvmlift2lem12  28387
  Copyright terms: Public domain W3C validator