Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem4 Structured version   Unicode version

Theorem cvmlift2lem4 29015
Description: Lemma for cvmlift2 29025. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem4  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  ( X K Y )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  Y ) )
Distinct variable groups:    x, f,
y, z, F    ph, f, x, y, z    f, J, x, y, z    f, G, x, y, z    f, H, x, y, z    f, X, x, y, z    C, f, x, y, z    P, f, x, y, z    x, B, y, z    f, Y, x, y, z    f, K, x, y, z
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2lem4
StepHypRef Expression
1 oveq1 6277 . . . . . . 7  |-  ( x  =  X  ->  (
x G z )  =  ( X G z ) )
21mpteq2dv 4526 . . . . . 6  |-  ( x  =  X  ->  (
z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) ) )
32eqeq2d 2468 . . . . 5  |-  ( x  =  X  ->  (
( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  <-> 
( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) ) ) )
4 fveq2 5848 . . . . . 6  |-  ( x  =  X  ->  ( H `  x )  =  ( H `  X ) )
54eqeq2d 2468 . . . . 5  |-  ( x  =  X  ->  (
( f `  0
)  =  ( H `
 x )  <->  ( f `  0 )  =  ( H `  X
) ) )
63, 5anbi12d 708 . . . 4  |-  ( x  =  X  ->  (
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) )  <->  ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1
)  |->  ( X G z ) )  /\  ( f `  0
)  =  ( H `
 X ) ) ) )
76riotabidv 6234 . . 3  |-  ( x  =  X  ->  ( iota_ f  e.  ( II 
Cn  C ) ( ( F  o.  f
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f ` 
0 )  =  ( H `  x ) ) )  =  (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) )
87fveq1d 5850 . 2  |-  ( x  =  X  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( f `
 0 )  =  ( H `  x
) ) ) `  y )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  y ) )
9 fveq2 5848 . 2  |-  ( y  =  Y  ->  (
( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  y )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  Y ) )
10 cvmlift2.k . 2  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
11 fvex 5858 . 2  |-  ( (
iota_ f  e.  (
II  Cn  C )
( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  Y )  e.  _V
128, 9, 10, 11ovmpt2 6411 1  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  ( X K Y )  =  ( ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( X G z ) )  /\  ( f `
 0 )  =  ( H `  X
) ) ) `  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   U.cuni 4235    |-> cmpt 4497    o. ccom 4992   ` cfv 5570   iota_crio 6231  (class class class)co 6270    |-> cmpt2 6272   0cc0 9481   1c1 9482   [,]cicc 11535    Cn ccn 19892    tX ctx 20227   IIcii 21545   CovMap ccvm 28964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275
This theorem is referenced by:  cvmlift2lem6  29017  cvmlift2lem8  29019
  Copyright terms: Public domain W3C validator