Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem13 Structured version   Unicode version

Theorem cvmlift2lem13 28935
Description: Lemma for cvmlift2 28936. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
Assertion
Ref Expression
cvmlift2lem13  |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
Distinct variable groups:    f, g, x, y, z, F    ph, f,
g, x, y, z   
f, J, g, x, y, z    f, G, g, x, y, z   
f, H, x, y, z    C, f, g, x, y, z    P, f, g, x, y, z   
x, B, y, z   
f, K, g, x, y, z
Allowed substitution hints:    B( f, g)    H( g)

Proof of Theorem cvmlift2lem13
Dummy variables  b 
c  d  u  v  a  r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . 4  |-  B  = 
U. C
2 cvmlift2.f . . . 4  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . . . 4  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . . . 4  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 cvmlift2.h . . . 4  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
7 cvmlift2.k . . . 4  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
8 fveq2 5872 . . . . . 6  |-  ( a  =  z  ->  (
( ( II  tX  II )  CnP  C ) `
 a )  =  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
98eleq2d 2527 . . . . 5  |-  ( a  =  z  ->  ( K  e.  ( (
( II  tX  II )  CnP  C ) `  a )  <->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) ) )
109cbvrabv 3108 . . . 4  |-  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  =  {
z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  z ) }
11 sneq 4042 . . . . . . 7  |-  ( z  =  b  ->  { z }  =  { b } )
1211xpeq2d 5032 . . . . . 6  |-  ( z  =  b  ->  (
( 0 [,] 1
)  X.  { z } )  =  ( ( 0 [,] 1
)  X.  { b } ) )
1312sseq1d 3526 . . . . 5  |-  ( z  =  b  ->  (
( ( 0 [,] 1 )  X.  {
z } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( (
0 [,] 1 )  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
1413cbvrabv 3108 . . . 4  |-  { z  e.  ( 0 [,] 1 )  |  ( ( 0 [,] 1
)  X.  { z } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } }  =  { b  e.  ( 0 [,] 1 )  |  ( ( 0 [,] 1 )  X. 
{ b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } }
15 simpr 461 . . . . . . 7  |-  ( ( c  =  r  /\  d  =  t )  ->  d  =  t )
1615eleq1d 2526 . . . . . 6  |-  ( ( c  =  r  /\  d  =  t )  ->  ( d  e.  ( 0 [,] 1 )  <-> 
t  e.  ( 0 [,] 1 ) ) )
17 xpeq1 5022 . . . . . . . . . 10  |-  ( v  =  u  ->  (
v  X.  { b } )  =  ( u  X.  { b } ) )
1817sseq1d 3526 . . . . . . . . 9  |-  ( v  =  u  ->  (
( v  X.  {
b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( u  X.  { b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
19 xpeq1 5022 . . . . . . . . . 10  |-  ( v  =  u  ->  (
v  X.  { d } )  =  ( u  X.  { d } ) )
2019sseq1d 3526 . . . . . . . . 9  |-  ( v  =  u  ->  (
( v  X.  {
d } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `  a ) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
2118, 20bibi12d 321 . . . . . . . 8  |-  ( v  =  u  ->  (
( ( v  X. 
{ b } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  ( (
u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
2221cbvrexv 3085 . . . . . . 7  |-  ( E. v  e.  ( ( nei `  II ) `
 { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { c } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
23 simpl 457 . . . . . . . . . 10  |-  ( ( c  =  r  /\  d  =  t )  ->  c  =  r )
2423sneqd 4044 . . . . . . . . 9  |-  ( ( c  =  r  /\  d  =  t )  ->  { c }  =  { r } )
2524fveq2d 5876 . . . . . . . 8  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( nei `  II ) `  { c } )  =  ( ( nei `  II ) `  { r } ) )
2615sneqd 4044 . . . . . . . . . . 11  |-  ( ( c  =  r  /\  d  =  t )  ->  { d }  =  { t } )
2726xpeq2d 5032 . . . . . . . . . 10  |-  ( ( c  =  r  /\  d  =  t )  ->  ( u  X.  {
d } )  =  ( u  X.  {
t } ) )
2827sseq1d 3526 . . . . . . . . 9  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )
2928bibi2d 318 . . . . . . . 8  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  ( (
u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3025, 29rexeqbidv 3069 . . . . . . 7  |-  ( ( c  =  r  /\  d  =  t )  ->  ( E. u  e.  ( ( nei `  II ) `  { c } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3122, 30syl5bb 257 . . . . . 6  |-  ( ( c  =  r  /\  d  =  t )  ->  ( E. v  e.  ( ( nei `  II ) `  { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } )  <->  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) )
3216, 31anbi12d 710 . . . . 5  |-  ( ( c  =  r  /\  d  =  t )  ->  ( ( d  e.  ( 0 [,] 1
)  /\  E. v  e.  ( ( nei `  II ) `  { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) )  <-> 
( t  e.  ( 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `  { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) ) )
3332cbvopabv 4526 . . . 4  |-  { <. c ,  d >.  |  ( d  e.  ( 0 [,] 1 )  /\  E. v  e.  ( ( nei `  II ) `
 { c } ) ( ( v  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( v  X.  { d } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) }  =  { <. r ,  t >.  |  ( t  e.  ( 0 [,] 1 )  /\  E. u  e.  ( ( nei `  II ) `
 { r } ) ( ( u  X.  { b } )  C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) }  <->  ( u  X.  { t } ) 
C_  { a  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  a
) } ) ) }
341, 2, 3, 4, 5, 6, 7, 10, 14, 33cvmlift2lem12 28934 . . 3  |-  ( ph  ->  K  e.  ( ( II  tX  II )  Cn  C ) )
351, 2, 3, 4, 5, 6, 7cvmlift2lem7 28929 . . 3  |-  ( ph  ->  ( F  o.  K
)  =  G )
36 0elunit 11663 . . . . 5  |-  0  e.  ( 0 [,] 1
)
371, 2, 3, 4, 5, 6, 7cvmlift2lem8 28930 . . . . 5  |-  ( (
ph  /\  0  e.  ( 0 [,] 1
) )  ->  (
0 K 0 )  =  ( H ` 
0 ) )
3836, 37mpan2 671 . . . 4  |-  ( ph  ->  ( 0 K 0 )  =  ( H `
 0 ) )
391, 2, 3, 4, 5, 6cvmlift2lem2 28924 . . . . 5  |-  ( ph  ->  ( H  e.  ( II  Cn  C )  /\  ( F  o.  H )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( H `
 0 )  =  P ) )
4039simp3d 1010 . . . 4  |-  ( ph  ->  ( H `  0
)  =  P )
4138, 40eqtrd 2498 . . 3  |-  ( ph  ->  ( 0 K 0 )  =  P )
42 coeq2 5171 . . . . . 6  |-  ( g  =  K  ->  ( F  o.  g )  =  ( F  o.  K ) )
4342eqeq1d 2459 . . . . 5  |-  ( g  =  K  ->  (
( F  o.  g
)  =  G  <->  ( F  o.  K )  =  G ) )
44 oveq 6302 . . . . . 6  |-  ( g  =  K  ->  (
0 g 0 )  =  ( 0 K 0 ) )
4544eqeq1d 2459 . . . . 5  |-  ( g  =  K  ->  (
( 0 g 0 )  =  P  <->  ( 0 K 0 )  =  P ) )
4643, 45anbi12d 710 . . . 4  |-  ( g  =  K  ->  (
( ( F  o.  g )  =  G  /\  ( 0 g 0 )  =  P )  <->  ( ( F  o.  K )  =  G  /\  ( 0 K 0 )  =  P ) ) )
4746rspcev 3210 . . 3  |-  ( ( K  e.  ( ( II  tX  II )  Cn  C )  /\  (
( F  o.  K
)  =  G  /\  ( 0 K 0 )  =  P ) )  ->  E. g  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  g )  =  G  /\  ( 0 g 0 )  =  P ) )
4834, 35, 41, 47syl12anc 1226 . 2  |-  ( ph  ->  E. g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
49 iitop 21509 . . . . 5  |-  II  e.  Top
50 iiuni 21510 . . . . 5  |-  ( 0 [,] 1 )  = 
U. II
5149, 49, 50, 50txunii 20219 . . . 4  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
52 iicon 21516 . . . . . 6  |-  II  e.  Con
53 txcon 20315 . . . . . 6  |-  ( ( II  e.  Con  /\  II  e.  Con )  -> 
( II  tX  II )  e.  Con )
5452, 52, 53mp2an 672 . . . . 5  |-  ( II 
tX  II )  e. 
Con
5554a1i 11 . . . 4  |-  ( ph  ->  ( II  tX  II )  e.  Con )
56 iinllycon 28874 . . . . . 6  |-  II  e. 𝑛Locally  Con
57 txcon 20315 . . . . . . 7  |-  ( ( x  e.  Con  /\  y  e.  Con )  ->  ( x  tX  y
)  e.  Con )
5857txnlly 20263 . . . . . 6  |-  ( ( II  e. 𝑛Locally  Con  /\  II  e. 𝑛Locally  Con )  ->  ( II  tX  II )  e. 𝑛Locally  Con )
5956, 56, 58mp2an 672 . . . . 5  |-  ( II 
tX  II )  e. 𝑛Locally  Con
6059a1i 11 . . . 4  |-  ( ph  ->  ( II  tX  II )  e. 𝑛Locally  Con )
61 opelxpi 5040 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
6236, 36, 61mp2an 672 . . . . 5  |-  <. 0 ,  0 >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )
6362a1i 11 . . . 4  |-  ( ph  -> 
<. 0 ,  0
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
64 df-ov 6299 . . . . 5  |-  ( 0 G 0 )  =  ( G `  <. 0 ,  0 >. )
655, 64syl6eq 2514 . . . 4  |-  ( ph  ->  ( F `  P
)  =  ( G `
 <. 0 ,  0
>. ) )
661, 51, 2, 55, 60, 63, 3, 4, 65cvmliftmo 28904 . . 3  |-  ( ph  ->  E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( g `  <. 0 ,  0 >. )  =  P ) )
67 df-ov 6299 . . . . . 6  |-  ( 0 g 0 )  =  ( g `  <. 0 ,  0 >. )
6867eqeq1i 2464 . . . . 5  |-  ( ( 0 g 0 )  =  P  <->  ( g `  <. 0 ,  0
>. )  =  P
)
6968anbi2i 694 . . . 4  |-  ( ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P )  <-> 
( ( F  o.  g )  =  G  /\  ( g `  <. 0 ,  0 >.
)  =  P ) )
7069rmobii 3049 . . 3  |-  ( E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  <->  E* g  e.  ( ( II  tX  II )  Cn  C
) ( ( F  o.  g )  =  G  /\  ( g `
 <. 0 ,  0
>. )  =  P
) )
7166, 70sylibr 212 . 2  |-  ( ph  ->  E* g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
72 reu5 3073 . 2  |-  ( E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  <->  ( E. g  e.  ( (
II  tX  II )  Cn  C ) ( ( F  o.  g )  =  G  /\  (
0 g 0 )  =  P )  /\  E* g  e.  (
( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) ) )
7348, 71, 72sylanbrc 664 1  |-  ( ph  ->  E! g  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  g
)  =  G  /\  ( 0 g 0 )  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   E.wrex 2808   E!wreu 2809   E*wrmo 2810   {crab 2811    C_ wss 3471   {csn 4032   <.cop 4038   U.cuni 4251   {copab 4514    |-> cmpt 4515    X. cxp 5006    o. ccom 5012   ` cfv 5594   iota_crio 6257  (class class class)co 6296    |-> cmpt2 6298   0cc0 9509   1c1 9510   [,]cicc 11557   neicnei 19724    Cn ccn 19851    CnP ccnp 19852   Conccon 20037  𝑛Locally cnlly 20091    tX ctx 20186   IIcii 21504   CovMap ccvm 28875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-ec 7331  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-sum 13520  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-cn 19854  df-cnp 19855  df-cmp 20013  df-con 20038  df-lly 20092  df-nlly 20093  df-tx 20188  df-hmeo 20381  df-xms 20948  df-ms 20949  df-tms 20950  df-ii 21506  df-htpy 21595  df-phtpy 21596  df-phtpc 21617  df-pcon 28841  df-scon 28842  df-cvm 28876
This theorem is referenced by:  cvmlift2  28936
  Copyright terms: Public domain W3C validator