Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   Unicode version

Theorem cvmlift2lem11 30108
Description: Lemma for cvmlift2 30111. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
cvmlift2.m  |-  M  =  { z  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) }
cvmlift2lem11.1  |-  ( ph  ->  U  e.  II )
cvmlift2lem11.2  |-  ( ph  ->  V  e.  II )
cvmlift2lem11.3  |-  ( ph  ->  Y  e.  V )
cvmlift2lem11.4  |-  ( ph  ->  Z  e.  V )
cvmlift2lem11.5  |-  ( ph  ->  ( E. w  e.  V  ( K  |`  ( U  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) ) )
Assertion
Ref Expression
cvmlift2lem11  |-  ( ph  ->  ( ( U  X.  { Y } )  C_  M  ->  ( U  X.  { Z } )  C_  M ) )
Distinct variable groups:    w, f, x, y, z, F    ph, f, w, x, y, z    x, M, y, z    f, J, w, x, y, z   
w, U, z    f, G, w, x, y, z   
w, V    f, H, w, x, y, z    z, Z    C, f, w, x, y, z    P, f, x, y, z    w, B, x, y, z    f, Y, w, x, y, z   
f, K, w, x, y, z
Allowed substitution hints:    B( f)    P( w)    U( x, y, f)    M( w, f)    V( x, y, z, f)    Z( x, y, w, f)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7  |-  ( ph  ->  U  e.  II )
21adantr 472 . . . . . 6  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  U  e.  II )
3 elssuni 4219 . . . . . . 7  |-  ( U  e.  II  ->  U  C_ 
U. II )
4 iiuni 21991 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
53, 4syl6sseqr 3465 . . . . . 6  |-  ( U  e.  II  ->  U  C_  ( 0 [,] 1
) )
62, 5syl 17 . . . . 5  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  U  C_  ( 0 [,] 1 ) )
7 cvmlift2lem11.4 . . . . . . . 8  |-  ( ph  ->  Z  e.  V )
8 cvmlift2lem11.2 . . . . . . . 8  |-  ( ph  ->  V  e.  II )
9 elunii 4195 . . . . . . . . 9  |-  ( ( Z  e.  V  /\  V  e.  II )  ->  Z  e.  U. II )
109, 4syl6eleqr 2560 . . . . . . . 8  |-  ( ( Z  e.  V  /\  V  e.  II )  ->  Z  e.  ( 0 [,] 1 ) )
117, 8, 10syl2anc 673 . . . . . . 7  |-  ( ph  ->  Z  e.  ( 0 [,] 1 ) )
1211adantr 472 . . . . . 6  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Z  e.  ( 0 [,] 1 ) )
1312snssd 4108 . . . . 5  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  { Z }  C_  (
0 [,] 1 ) )
14 xpss12 4945 . . . . 5  |-  ( ( U  C_  ( 0 [,] 1 )  /\  { Z }  C_  (
0 [,] 1 ) )  ->  ( U  X.  { Z } ) 
C_  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
156, 13, 14syl2anc 673 . . . 4  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
16 cvmlift2lem11.3 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  V )
1716adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Y  e.  V )
18 cvmlift2.b . . . . . . . . . . . . 13  |-  B  = 
U. C
19 cvmlift2.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
20 cvmlift2.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
21 cvmlift2.p . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  B )
22 cvmlift2.i . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
23 cvmlift2.h . . . . . . . . . . . . 13  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
24 cvmlift2.k . . . . . . . . . . . . 13  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 30102 . . . . . . . . . . . 12  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
2625adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
278adantr 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  V  e.  II )
28 elssuni 4219 . . . . . . . . . . . . . . . 16  |-  ( V  e.  II  ->  V  C_ 
U. II )
2928, 4syl6sseqr 3465 . . . . . . . . . . . . . . 15  |-  ( V  e.  II  ->  V  C_  ( 0 [,] 1
) )
3027, 29syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  V  C_  ( 0 [,] 1 ) )
3130, 17sseldd 3419 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Y  e.  ( 0 [,] 1 ) )
3231snssd 4108 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  { Y }  C_  (
0 [,] 1 ) )
33 xpss12 4945 . . . . . . . . . . . 12  |-  ( ( U  C_  ( 0 [,] 1 )  /\  { Y }  C_  (
0 [,] 1 ) )  ->  ( U  X.  { Y } ) 
C_  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
346, 32, 33syl2anc 673 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Y } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
3526, 34fssresd 5762 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( K  |`  ( U  X.  { Y }
) ) : ( U  X.  { Y } ) --> B )
3634adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  ( U  X.  { Y }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
37 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  z  e.  ( U  X.  { Y } ) )
38 simpr 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Y } )  C_  M
)
39 cvmlift2.m . . . . . . . . . . . . . . 15  |-  M  =  { z  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) }
4038, 39syl6sseq 3464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Y } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) } )
41 ssrab 3493 . . . . . . . . . . . . . . 15  |-  ( ( U  X.  { Y } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) }  <->  ( ( U  X.  { Y }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) )  /\  A. z  e.  ( U  X.  { Y }
) K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) ) )
4241simprbi 471 . . . . . . . . . . . . . 14  |-  ( ( U  X.  { Y } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) }  ->  A. z  e.  ( U  X.  { Y } ) K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
4340, 42syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  A. z  e.  ( U  X.  { Y }
) K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) )
4443r19.21bi 2776 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
45 iitopon 21989 . . . . . . . . . . . . . . 15  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
46 txtopon 20683 . . . . . . . . . . . . . . 15  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( II  tX  II )  e.  (TopOn `  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
4745, 45, 46mp2an 686 . . . . . . . . . . . . . 14  |-  ( II 
tX  II )  e.  (TopOn `  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
4847toponunii 20024 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
4948cnpresti 20381 . . . . . . . . . . . 12  |-  ( ( ( U  X.  { Y } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  /\  z  e.  ( U  X.  { Y } )  /\  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )  ->  ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  CnP 
C ) `  z
) )
5036, 37, 44, 49syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  CnP 
C ) `  z
) )
5150ralrimiva 2809 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  A. z  e.  ( U  X.  { Y }
) ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  CnP  C
) `  z )
)
52 resttopon 20254 . . . . . . . . . . . 12  |-  ( ( ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  /\  ( U  X.  { Y }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( ( II 
tX  II )t  ( U  X.  { Y }
) )  e.  (TopOn `  ( U  X.  { Y } ) ) )
5347, 34, 52sylancr 676 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( ( II  tX  II )t  ( U  X.  { Y } ) )  e.  (TopOn `  ( U  X.  { Y }
) ) )
54 cvmtop1 30055 . . . . . . . . . . . . . 14  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
5519, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  Top )
5655adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  C  e.  Top )
5718toptopon 20025 . . . . . . . . . . . 12  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
5856, 57sylib 201 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  C  e.  (TopOn `  B
) )
59 cncnp 20373 . . . . . . . . . . 11  |-  ( ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  e.  (TopOn `  ( U  X.  { Y }
) )  /\  C  e.  (TopOn `  B )
)  ->  ( ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  Cn  C
)  <->  ( ( K  |`  ( U  X.  { Y } ) ) : ( U  X.  { Y } ) --> B  /\  A. z  e.  ( U  X.  { Y }
) ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  CnP  C
) `  z )
) ) )
6053, 58, 59syl2anc 673 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Y }
) )  Cn  C
)  <->  ( ( K  |`  ( U  X.  { Y } ) ) : ( U  X.  { Y } ) --> B  /\  A. z  e.  ( U  X.  { Y }
) ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  CnP  C
) `  z )
) ) )
6135, 51, 60mpbir2and 936 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( K  |`  ( U  X.  { Y }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  Cn  C ) )
62 sneq 3969 . . . . . . . . . . . . 13  |-  ( w  =  Y  ->  { w }  =  { Y } )
6362xpeq2d 4863 . . . . . . . . . . . 12  |-  ( w  =  Y  ->  ( U  X.  { w }
)  =  ( U  X.  { Y }
) )
6463reseq2d 5111 . . . . . . . . . . 11  |-  ( w  =  Y  ->  ( K  |`  ( U  X.  { w } ) )  =  ( K  |`  ( U  X.  { Y } ) ) )
6563oveq2d 6324 . . . . . . . . . . . 12  |-  ( w  =  Y  ->  (
( II  tX  II )t  ( U  X.  { w } ) )  =  ( ( II  tX  II )t  ( U  X.  { Y } ) ) )
6665oveq1d 6323 . . . . . . . . . . 11  |-  ( w  =  Y  ->  (
( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C )  =  ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  Cn  C
) )
6764, 66eleq12d 2543 . . . . . . . . . 10  |-  ( w  =  Y  ->  (
( K  |`  ( U  X.  { w }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C )  <-> 
( K  |`  ( U  X.  { Y }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  Cn  C ) ) )
6867rspcev 3136 . . . . . . . . 9  |-  ( ( Y  e.  V  /\  ( K  |`  ( U  X.  { Y }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  Cn  C ) )  ->  E. w  e.  V  ( K  |`  ( U  X.  { w }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C ) )
6917, 61, 68syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  E. w  e.  V  ( K  |`  ( U  X.  { w }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C ) )
70 cvmlift2lem11.5 . . . . . . . . 9  |-  ( ph  ->  ( E. w  e.  V  ( K  |`  ( U  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) ) )
7170imp 436 . . . . . . . 8  |-  ( (
ph  /\  E. w  e.  V  ( K  |`  ( U  X.  {
w } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w }
) )  Cn  C
) )  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  V ) )  Cn  C ) )
7269, 71syldan 478 . . . . . . 7  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
7372adantr 472 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  V ) )  Cn  C ) )
747adantr 472 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Z  e.  V )
7574snssd 4108 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  { Z }  C_  V
)
76 xpss2 4949 . . . . . . . . 9  |-  ( { Z }  C_  V  ->  ( U  X.  { Z } )  C_  ( U  X.  V ) )
7775, 76syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  ( U  X.  V ) )
78 iitop 21990 . . . . . . . . . 10  |-  II  e.  Top
7978, 78txtopi 20682 . . . . . . . . 9  |-  ( II 
tX  II )  e. 
Top
80 xpss12 4945 . . . . . . . . . 10  |-  ( ( U  C_  ( 0 [,] 1 )  /\  V  C_  ( 0 [,] 1 ) )  -> 
( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
816, 30, 80syl2anc 673 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
8248restuni 20255 . . . . . . . . 9  |-  ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  V )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  ->  ( U  X.  V )  = 
U. ( ( II 
tX  II )t  ( U  X.  V ) ) )
8379, 81, 82sylancr 676 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  V
)  =  U. (
( II  tX  II )t  ( U  X.  V
) ) )
8477, 83sseqtrd 3454 . . . . . . 7  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  U. (
( II  tX  II )t  ( U  X.  V
) ) )
8584sselda 3418 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  z  e.  U. ( ( II 
tX  II )t  ( U  X.  V ) ) )
86 eqid 2471 . . . . . . 7  |-  U. (
( II  tX  II )t  ( U  X.  V
) )  =  U. ( ( II  tX  II )t  ( U  X.  V ) )
8786cncnpi 20371 . . . . . 6  |-  ( ( ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C )  /\  z  e.  U. (
( II  tX  II )t  ( U  X.  V
) ) )  -> 
( K  |`  ( U  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  V
) )  CnP  C
) `  z )
)
8873, 85, 87syl2anc 673 . . . . 5  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  V ) )  CnP  C ) `  z ) )
8979a1i 11 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  (
II  tX  II )  e.  Top )
9081adantr 472 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( U  X.  V )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
9178a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  II  e.  Top )
92 txopn 20694 . . . . . . . . . 10  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( U  e.  II  /\  V  e.  II ) )  ->  ( U  X.  V )  e.  ( II  tX  II ) )
9391, 91, 2, 27, 92syl22anc 1293 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  V
)  e.  ( II 
tX  II ) )
94 isopn3i 20175 . . . . . . . . 9  |-  ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  V )  e.  ( II  tX  II ) )  ->  (
( int `  (
II  tX  II )
) `  ( U  X.  V ) )  =  ( U  X.  V
) )
9579, 93, 94sylancr 676 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( ( int `  (
II  tX  II )
) `  ( U  X.  V ) )  =  ( U  X.  V
) )
9677, 95sseqtr4d 3455 . . . . . . 7  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  (
( int `  (
II  tX  II )
) `  ( U  X.  V ) ) )
9796sselda 3418 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  z  e.  ( ( int `  (
II  tX  II )
) `  ( U  X.  V ) ) )
9825ad2antrr 740 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
9948, 18cnprest 20382 . . . . . 6  |-  ( ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  /\  ( z  e.  ( ( int `  (
II  tX  II )
) `  ( U  X.  V ) )  /\  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B ) )  ->  ( K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
)  <->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( ( II 
tX  II )t  ( U  X.  V ) )  CnP  C ) `  z ) ) )
10089, 90, 97, 98, 99syl22anc 1293 . . . . 5  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( K  e.  ( (
( II  tX  II )  CnP  C ) `  z )  <->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( ( II 
tX  II )t  ( U  X.  V ) )  CnP  C ) `  z ) ) )
10188, 100mpbird 240 . . . 4  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
10215, 101ssrabdv 3494 . . 3  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) } )
103102, 39syl6sseqr 3465 . 2  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  M
)
104103ex 441 1  |-  ( ph  ->  ( ( U  X.  { Y } )  C_  M  ->  ( U  X.  { Z } )  C_  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760    C_ wss 3390   {csn 3959   U.cuni 4190    |-> cmpt 4454    X. cxp 4837    |` cres 4841    o. ccom 4843   -->wf 5585   ` cfv 5589   iota_crio 6269  (class class class)co 6308    |-> cmpt2 6310   0cc0 9557   1c1 9558   [,]cicc 11663   ↾t crest 15397   Topctop 19994  TopOnctopon 19995   intcnt 20109    Cn ccn 20317    CnP ccnp 20318    tX ctx 20652   IIcii 21985   CovMap ccvm 30050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-ec 7383  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-cn 20320  df-cnp 20321  df-cmp 20479  df-con 20504  df-lly 20558  df-nlly 20559  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415  df-ii 21987  df-htpy 22079  df-phtpy 22080  df-phtpc 22101  df-pcon 30016  df-scon 30017  df-cvm 30051
This theorem is referenced by:  cvmlift2lem12  30109
  Copyright terms: Public domain W3C validator