Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem10 Unicode version

Theorem cvmlift2lem10 24952
Description: Lemma for cvmlift2 24956. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
cvmlift2lem10.s  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
cvmlift2lem10.1  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
cvmlift2lem10.2  |-  ( ph  ->  Y  e.  ( 0 [,] 1 ) )
Assertion
Ref Expression
cvmlift2lem10  |-  ( ph  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) )
Distinct variable groups:    c, d,
f, k, s, u, v, w, x, y, z, F    ph, f, u, v, w, x, y, z    S, f, u, v, w, x, y, z    J, c, d, f, k, s, u, v, w, x, y, z    G, c, f, k, u, v, w, x, y, z    H, c, f, u, v, w, x, y, z    X, c, d, f, k, u, v, w, x, y, z    C, c, d, f, k, s, u, v, w, x, y, z    P, f, k, u, v, x, y, z    B, c, d, v, w, x, y, z    Y, c, d, f, k, u, v, w, x, y, z    K, c, d, f, u, v, w, x, y, z
Allowed substitution hints:    ph( k, s, c, d)    B( u, f, k, s)    P( w, s, c, d)    S( k, s, c, d)    G( s, d)    H( k, s, d)    K( k, s)    X( s)    Y( s)

Proof of Theorem cvmlift2lem10
Dummy variables  b  m  a  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.f . . 3  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
2 cvmlift2.g . . . . 5  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
3 iitop 18863 . . . . . . 7  |-  II  e.  Top
4 iiuni 18864 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
53, 3, 4, 4txunii 17578 . . . . . 6  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
6 eqid 2404 . . . . . 6  |-  U. J  =  U. J
75, 6cnf 17264 . . . . 5  |-  ( G  e.  ( ( II 
tX  II )  Cn  J )  ->  G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J
)
82, 7syl 16 . . . 4  |-  ( ph  ->  G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J )
9 cvmlift2lem10.1 . . . . 5  |-  ( ph  ->  X  e.  ( 0 [,] 1 ) )
10 cvmlift2lem10.2 . . . . 5  |-  ( ph  ->  Y  e.  ( 0 [,] 1 ) )
11 opelxpi 4869 . . . . 5  |-  ( ( X  e.  ( 0 [,] 1 )  /\  Y  e.  ( 0 [,] 1 ) )  ->  <. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
129, 10, 11syl2anc 643 . . . 4  |-  ( ph  -> 
<. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
138, 12ffvelrnd 5830 . . 3  |-  ( ph  ->  ( G `  <. X ,  Y >. )  e.  U. J )
14 cvmlift2lem10.s . . . 4  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. c  e.  s  ( A. d  e.  ( s  \  {
c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) 
Homeo  ( Jt  k ) ) ) ) } )
1514, 6cvmcov 24903 . . 3  |-  ( ( F  e.  ( C CovMap  J )  /\  ( G `  <. X ,  Y >. )  e.  U. J )  ->  E. m  e.  J  ( ( G `  <. X ,  Y >. )  e.  m  /\  ( S `  m
)  =/=  (/) ) )
161, 13, 15syl2anc 643 . 2  |-  ( ph  ->  E. m  e.  J  ( ( G `  <. X ,  Y >. )  e.  m  /\  ( S `  m )  =/=  (/) ) )
17 n0 3597 . . . . 5  |-  ( ( S `  m )  =/=  (/)  <->  E. t  t  e.  ( S `  m
) )
1812adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  <. X ,  Y >.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
19 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  ( G `  <. X ,  Y >. )  e.  m
)
208adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J
)
21 ffn 5550 . . . . . . . . . . . 12  |-  ( G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. J  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
22 elpreima 5809 . . . . . . . . . . . 12  |-  ( G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  ->  ( <. X ,  Y >.  e.  ( `' G "
m )  <->  ( <. X ,  Y >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  /\  ( G `  <. X ,  Y >. )  e.  m ) ) )
2320, 21, 223syl 19 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  ( <. X ,  Y >.  e.  ( `' G "
m )  <->  ( <. X ,  Y >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  /\  ( G `  <. X ,  Y >. )  e.  m ) ) )
2418, 19, 23mpbir2and 889 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  <. X ,  Y >.  e.  ( `' G " m ) )
252adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  G  e.  ( ( II  tX  II )  Cn  J
) )
2614cvmsrcl 24904 . . . . . . . . . . . . 13  |-  ( t  e.  ( S `  m )  ->  m  e.  J )
2726ad2antll 710 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  m  e.  J )
28 cnima 17283 . . . . . . . . . . . 12  |-  ( ( G  e.  ( ( II  tX  II )  Cn  J )  /\  m  e.  J )  ->  ( `' G " m )  e.  ( II  tX  II ) )
2925, 27, 28syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  ( `' G " m )  e.  ( II  tX  II ) )
30 eltx 17553 . . . . . . . . . . . 12  |-  ( ( II  e.  Top  /\  II  e.  Top )  -> 
( ( `' G " m )  e.  ( II  tX  II )  <->  A. z  e.  ( `' G " m ) E. a  e.  II  E. b  e.  II  ( z  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) ) )
313, 3, 30mp2an 654 . . . . . . . . . . 11  |-  ( ( `' G " m )  e.  ( II  tX  II )  <->  A. z  e.  ( `' G " m ) E. a  e.  II  E. b  e.  II  ( z  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )
3229, 31sylib 189 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  A. z  e.  ( `' G "
m ) E. a  e.  II  E. b  e.  II  ( z  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' G " m ) ) )
33 eleq1 2464 . . . . . . . . . . . . . 14  |-  ( z  =  <. X ,  Y >.  ->  ( z  e.  ( a  X.  b
)  <->  <. X ,  Y >.  e.  ( a  X.  b ) ) )
34 opelxp 4867 . . . . . . . . . . . . . 14  |-  ( <. X ,  Y >.  e.  ( a  X.  b
)  <->  ( X  e.  a  /\  Y  e.  b ) )
3533, 34syl6bb 253 . . . . . . . . . . . . 13  |-  ( z  =  <. X ,  Y >.  ->  ( z  e.  ( a  X.  b
)  <->  ( X  e.  a  /\  Y  e.  b ) ) )
3635anbi1d 686 . . . . . . . . . . . 12  |-  ( z  =  <. X ,  Y >.  ->  ( ( z  e.  ( a  X.  b )  /\  (
a  X.  b ) 
C_  ( `' G " m ) )  <->  ( ( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b
)  C_  ( `' G " m ) ) ) )
37362rexbidv 2709 . . . . . . . . . . 11  |-  ( z  =  <. X ,  Y >.  ->  ( E. a  e.  II  E. b  e.  II  ( z  e.  ( a  X.  b
)  /\  ( a  X.  b )  C_  ( `' G " m ) )  <->  E. a  e.  II  E. b  e.  II  ( ( X  e.  a  /\  Y  e.  b )  /\  (
a  X.  b ) 
C_  ( `' G " m ) ) ) )
3837rspcv 3008 . . . . . . . . . 10  |-  ( <. X ,  Y >.  e.  ( `' G "
m )  ->  ( A. z  e.  ( `' G " m ) E. a  e.  II  E. b  e.  II  ( z  e.  ( a  X.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) )  ->  E. a  e.  II  E. b  e.  II  ( ( X  e.  a  /\  Y  e.  b )  /\  (
a  X.  b ) 
C_  ( `' G " m ) ) ) )
3924, 32, 38sylc 58 . . . . . . . . 9  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  E. a  e.  II  E. b  e.  II  ( ( X  e.  a  /\  Y  e.  b )  /\  (
a  X.  b ) 
C_  ( `' G " m ) ) )
40 iillyscon 24893 . . . . . . . . . . . . . 14  |-  II  e. Locally SCon
4140a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  II  e. Locally SCon )
42 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  a  e.  II )
43 simprll 739 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  X  e.  a )
44 llyi 17490 . . . . . . . . . . . . 13  |-  ( ( II  e. Locally SCon  /\  a  e.  II  /\  X  e.  a )  ->  E. u  e.  II  ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )
)
4541, 42, 43, 44syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  E. u  e.  II  ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )
)
46 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  b  e.  II )
47 simprlr 740 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  Y  e.  b )
48 llyi 17490 . . . . . . . . . . . . 13  |-  ( ( II  e. Locally SCon  /\  b  e.  II  /\  Y  e.  b )  ->  E. v  e.  II  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon ) )
4941, 46, 47, 48syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  E. v  e.  II  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon ) )
50 reeanv 2835 . . . . . . . . . . . . 13  |-  ( E. u  e.  II  E. v  e.  II  (
( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  <->  ( E. u  e.  II  (
u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  E. v  e.  II  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) ) )
51 simpl2 961 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  X  e.  u )
5251a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  X  e.  u ) )
53 simpr2 964 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  Y  e.  v )
5453a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  Y  e.  v ) )
55 simprl1 1002 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  /\  (
( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) ) )  ->  u  C_  a )
56 simprr1 1005 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  /\  (
( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) ) )  -> 
v  C_  b )
57 xpss12 4940 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( u  C_  a  /\  v  C_  b )  -> 
( u  X.  v
)  C_  ( a  X.  b ) )
5855, 56, 57syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  /\  (
( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) ) )  -> 
( u  X.  v
)  C_  ( a  X.  b ) )
59 simplrr 738 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  /\  (
( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) ) )  -> 
( a  X.  b
)  C_  ( `' G " m ) )
6058, 59sstrd 3318 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  /\  (
( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) ) )  -> 
( u  X.  v
)  C_  ( `' G " m ) )
6160ex 424 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  (
u  X.  v ) 
C_  ( `' G " m ) ) )
6252, 54, 613jcad 1135 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' G " m ) ) ) )
63 simp3 959 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  ->  ( IIt  u )  e. SCon )
64 simp3 959 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
)  ->  ( IIt  v
)  e. SCon )
6563, 64anim12i 550 . . . . . . . . . . . . . . . . 17  |-  ( ( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  (
( IIt  u )  e. SCon  /\  ( IIt  v )  e. SCon
) )
6665a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  (
( IIt  u )  e. SCon  /\  ( IIt  v )  e. SCon
) ) )
6762, 66jcad 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  (
( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  (
IIt 
v )  e. SCon )
) ) )
6867reximdv 2777 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  ( E. v  e.  II  ( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
) )
6968reximdv 2777 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  ( E. u  e.  II  E. v  e.  II  ( ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
) )
7050, 69syl5bir 210 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  (
( E. u  e.  II  ( u  C_  a  /\  X  e.  u  /\  ( IIt  u )  e. SCon )  /\  E. v  e.  II  ( v  C_  b  /\  Y  e.  v  /\  ( IIt  v )  e. SCon
) )  ->  E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
) )
7145, 49, 70mp2and 661 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  /\  (
( X  e.  a  /\  Y  e.  b )  /\  ( a  X.  b )  C_  ( `' G " m ) ) )  ->  E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)
7271ex 424 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( a  e.  II  /\  b  e.  II ) )  ->  (
( ( X  e.  a  /\  Y  e.  b )  /\  (
a  X.  b ) 
C_  ( `' G " m ) )  ->  E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v )  C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v )  e. SCon
) ) ) )
7372rexlimdvva 2797 . . . . . . . . 9  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  ( E. a  e.  II  E. b  e.  II  ( ( X  e.  a  /\  Y  e.  b )  /\  (
a  X.  b ) 
C_  ( `' G " m ) )  ->  E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v )  C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v )  e. SCon
) ) ) )
7439, 73mpd 15 . . . . . . . 8  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)
75 simp3l1 1062 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  X  e.  u )
76 simp3l2 1063 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  Y  e.  v )
77 cvmlift2.b . . . . . . . . . . . . . . 15  |-  B  = 
U. C
78 simpl1l 1008 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ph )
7978, 1syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  F  e.  ( C CovMap  J ) )
8078, 2syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
81 cvmlift2.p . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  B )
8278, 81syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  P  e.  B
)
83 cvmlift2.i . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
8478, 83syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( F `  P )  =  ( 0 G 0 ) )
85 cvmlift2.h . . . . . . . . . . . . . . 15  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
86 cvmlift2.k . . . . . . . . . . . . . . 15  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
87 df-ov 6043 . . . . . . . . . . . . . . . 16  |-  ( X G Y )  =  ( G `  <. X ,  Y >. )
88 simpl1r 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( ( G `
 <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m ) ) )
8988simpld 446 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( G `  <. X ,  Y >. )  e.  m )
9087, 89syl5eqel 2488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( X G Y )  e.  m
)
9188simprd 450 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  t  e.  ( S `  m ) )
92 simpl2l 1010 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  u  e.  II )
93 simpl2r 1011 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  v  e.  II )
94 simp3rl 1030 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  ( IIt  u
)  e. SCon )
9594adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( IIt  u )  e. SCon )
96 sconpcon 24867 . . . . . . . . . . . . . . . 16  |-  ( ( IIt  u )  e. SCon  ->  ( IIt  u )  e. PCon )
97 pconcon 24871 . . . . . . . . . . . . . . . 16  |-  ( ( IIt  u )  e. PCon  ->  ( IIt  u )  e.  Con )
9895, 96, 973syl 19 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( IIt  u )  e.  Con )
99 simp3rr 1031 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  ( IIt  v
)  e. SCon )
10099adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( IIt  v )  e. SCon )
101 sconpcon 24867 . . . . . . . . . . . . . . . 16  |-  ( ( IIt  v )  e. SCon  ->  ( IIt  v )  e. PCon )
102 pconcon 24871 . . . . . . . . . . . . . . . 16  |-  ( ( IIt  v )  e. PCon  ->  ( IIt  v )  e.  Con )
103100, 101, 1023syl 19 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( IIt  v )  e.  Con )
10475adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  X  e.  u
)
10576adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  Y  e.  v )
106 simp3l3 1064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  ( u  X.  v )  C_  ( `' G " m ) )
107106adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( u  X.  v )  C_  ( `' G " m ) )
108 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  w  e.  v )
109 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
) )
110 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( iota_ b  e.  t ( X K Y )  e.  b )  =  (
iota_ b  e.  t
( X K Y )  e.  b )
11177, 79, 80, 82, 84, 85, 86, 14, 90, 91, 92, 93, 98, 103, 104, 105, 107, 108, 109, 110cvmlift2lem9 24951 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  /\  ( w  e.  v  /\  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C ) ) )  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) )
112111rexlimdvaa 2791 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) )
11375, 76, 1123jca 1134 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II )  /\  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )
)  ->  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) )
1141133expia 1155 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  ( u  e.  II  /\  v  e.  II ) )  ->  (
( ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v )  C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v )  e. SCon
) )  ->  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  (
u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
115114anassrs 630 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  u  e.  II )  /\  v  e.  II )  ->  ( ( ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v
)  C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  (
IIt 
v )  e. SCon )
)  ->  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
116115reximdva 2778 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m
) ) )  /\  u  e.  II )  ->  ( E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  (
u  X.  v ) 
C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v
)  e. SCon ) )  ->  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
117116reximdva 2778 . . . . . . . 8  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  ( E. u  e.  II  E. v  e.  II  ( ( X  e.  u  /\  Y  e.  v  /\  ( u  X.  v )  C_  ( `' G " m ) )  /\  ( ( IIt  u )  e. SCon  /\  ( IIt  v )  e. SCon
) )  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
11874, 117mpd 15 . . . . . . 7  |-  ( (
ph  /\  ( ( G `  <. X ,  Y >. )  e.  m  /\  t  e.  ( S `  m )
) )  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) )
119118expr 599 . . . . . 6  |-  ( (
ph  /\  ( G `  <. X ,  Y >. )  e.  m )  ->  ( t  e.  ( S `  m
)  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
120119exlimdv 1643 . . . . 5  |-  ( (
ph  /\  ( G `  <. X ,  Y >. )  e.  m )  ->  ( E. t 
t  e.  ( S `
 m )  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
12117, 120syl5bi 209 . . . 4  |-  ( (
ph  /\  ( G `  <. X ,  Y >. )  e.  m )  ->  ( ( S `
 m )  =/=  (/)  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
122121expimpd 587 . . 3  |-  ( ph  ->  ( ( ( G `
 <. X ,  Y >. )  e.  m  /\  ( S `  m )  =/=  (/) )  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
123122rexlimdvw 2793 . 2  |-  ( ph  ->  ( E. m  e.  J  ( ( G `
 <. X ,  Y >. )  e.  m  /\  ( S `  m )  =/=  (/) )  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II  tX  II )t  ( u  X.  { w } ) )  Cn  C )  ->  ( K  |`  ( u  X.  v ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) ) )
12416, 123mpd 15 1  |-  ( ph  ->  E. u  e.  II  E. v  e.  II  ( X  e.  u  /\  Y  e.  v  /\  ( E. w  e.  v  ( K  |`  ( u  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( u  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( u  X.  v
) )  e.  ( ( ( II  tX  II )t  ( u  X.  v ) )  Cn  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   <.cop 3777   U.cuni 3975    e. cmpt 4226    X. cxp 4835   `'ccnv 4836    |` cres 4839   "cima 4840    o. ccom 4841    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   iota_crio 6501   0cc0 8946   1c1 8947   [,]cicc 10875   ↾t crest 13603   Topctop 16913    Cn ccn 17242   Conccon 17427  Locally clly 17480    tX ctx 17545    Homeo chmeo 17738   IIcii 18858  PConcpcon 24859  SConcscon 24860   CovMap ccvm 24895
This theorem is referenced by:  cvmlift2lem12  24954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-ec 6866  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-cn 17245  df-cnp 17246  df-cmp 17404  df-con 17428  df-lly 17482  df-nlly 17483  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-ii 18860  df-htpy 18948  df-phtpy 18949  df-phtpc 18970  df-pcon 24861  df-scon 24862  df-cvm 24896
  Copyright terms: Public domain W3C validator