Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Structured version   Unicode version

Theorem cvmlift2lem1 29599
Description: Lemma for cvmlift2 29613. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  (
( 0 [,] 1
)  X.  { t } )  C_  M
) )
Distinct variable groups:    u, t, x, y    u, M, y
Allowed substitution hints:    M( x, t)

Proof of Theorem cvmlift2lem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 biimp 193 . . . . . 6  |-  ( ( ( u  X.  {
x } )  C_  M 
<->  ( u  X.  {
t } )  C_  M )  ->  (
( u  X.  {
x } )  C_  M  ->  ( u  X.  { t } ) 
C_  M ) )
2 iitop 21676 . . . . . . . . . . 11  |-  II  e.  Top
3 iiuni 21677 . . . . . . . . . . . 12  |-  ( 0 [,] 1 )  = 
U. II
43neii1 19900 . . . . . . . . . . 11  |-  ( ( II  e.  Top  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  u  C_  (
0 [,] 1 ) )
52, 4mpan 668 . . . . . . . . . 10  |-  ( u  e.  ( ( nei `  II ) `  {
y } )  ->  u  C_  ( 0 [,] 1 ) )
65adantl 464 . . . . . . . . 9  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  u  C_  ( 0 [,] 1 ) )
7 xpss1 4932 . . . . . . . . 9  |-  ( u 
C_  ( 0 [,] 1 )  ->  (
u  X.  { x } )  C_  (
( 0 [,] 1
)  X.  { x } ) )
86, 7syl 17 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( u  X.  {
x } )  C_  ( ( 0 [,] 1 )  X.  {
x } ) )
9 simpl 455 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( 0 [,] 1 )  X.  {
x } )  C_  M )
108, 9sstrd 3452 . . . . . . 7  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( u  X.  {
x } )  C_  M )
11 ssnei 19904 . . . . . . . . . . . 12  |-  ( ( II  e.  Top  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  { y }  C_  u )
122, 11mpan 668 . . . . . . . . . . 11  |-  ( u  e.  ( ( nei `  II ) `  {
y } )  ->  { y }  C_  u )
1312adantl 464 . . . . . . . . . 10  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  { y }  C_  u )
14 vex 3062 . . . . . . . . . . 11  |-  y  e. 
_V
1514snss 4096 . . . . . . . . . 10  |-  ( y  e.  u  <->  { y }  C_  u )
1613, 15sylibr 212 . . . . . . . . 9  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
y  e.  u )
17 ssnid 4001 . . . . . . . . 9  |-  t  e. 
{ t }
18 opelxpi 4855 . . . . . . . . 9  |-  ( ( y  e.  u  /\  t  e.  { t } )  ->  <. y ,  t >.  e.  ( u  X.  { t } ) )
1916, 17, 18sylancl 660 . . . . . . . 8  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  ->  <. y ,  t >.  e.  ( u  X.  {
t } ) )
20 ssel 3436 . . . . . . . 8  |-  ( ( u  X.  { t } )  C_  M  ->  ( <. y ,  t
>.  e.  ( u  X.  { t } )  ->  <. y ,  t
>.  e.  M ) )
2119, 20syl5com 28 . . . . . . 7  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( u  X.  { t } ) 
C_  M  ->  <. y ,  t >.  e.  M
) )
2210, 21embantd 53 . . . . . 6  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( ( u  X.  { x }
)  C_  M  ->  ( u  X.  { t } )  C_  M
)  ->  <. y ,  t >.  e.  M
) )
231, 22syl5 30 . . . . 5  |-  ( ( ( ( 0 [,] 1 )  X.  {
x } )  C_  M  /\  u  e.  ( ( nei `  II ) `  { y } ) )  -> 
( ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  ->  <. y ,  t >.  e.  M ) )
2423rexlimdva 2896 . . . 4  |-  ( ( ( 0 [,] 1
)  X.  { x } )  C_  M  ->  ( E. u  e.  ( ( nei `  II ) `  { y } ) ( ( u  X.  { x } )  C_  M  <->  ( u  X.  { t } )  C_  M
)  ->  <. y ,  t >.  e.  M
) )
2524ralimdv 2814 . . 3  |-  ( ( ( 0 [,] 1
)  X.  { x } )  C_  M  ->  ( A. y  e.  ( 0 [,] 1
) E. u  e.  ( ( nei `  II ) `  { y } ) ( ( u  X.  { x } )  C_  M  <->  ( u  X.  { t } )  C_  M
)  ->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M ) )
2625com12 29 . 2  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M ) )
27 dfss3 3432 . . 3  |-  ( ( ( 0 [,] 1
)  X.  { t } )  C_  M  <->  A. z  e.  ( ( 0 [,] 1 )  X.  { t } ) z  e.  M
)
28 eleq1 2474 . . . 4  |-  ( z  =  <. y ,  u >.  ->  ( z  e.  M  <->  <. y ,  u >.  e.  M ) )
2928ralxp 4965 . . 3  |-  ( A. z  e.  ( (
0 [,] 1 )  X.  { t } ) z  e.  M  <->  A. y  e.  ( 0 [,] 1 ) A. u  e.  { t } <. y ,  u >.  e.  M )
30 vex 3062 . . . . 5  |-  t  e. 
_V
31 opeq2 4160 . . . . . 6  |-  ( u  =  t  ->  <. y ,  u >.  =  <. y ,  t >. )
3231eleq1d 2471 . . . . 5  |-  ( u  =  t  ->  ( <. y ,  u >.  e.  M  <->  <. y ,  t
>.  e.  M ) )
3330, 32ralsn 4011 . . . 4  |-  ( A. u  e.  { t } <. y ,  u >.  e.  M  <->  <. y ,  t >.  e.  M
)
3433ralbii 2835 . . 3  |-  ( A. y  e.  ( 0 [,] 1 ) A. u  e.  { t } <. y ,  u >.  e.  M  <->  A. y  e.  ( 0 [,] 1
) <. y ,  t
>.  e.  M )
3527, 29, 343bitri 271 . 2  |-  ( ( ( 0 [,] 1
)  X.  { t } )  C_  M  <->  A. y  e.  ( 0 [,] 1 ) <.
y ,  t >.  e.  M )
3626, 35syl6ibr 227 1  |-  ( A. y  e.  ( 0 [,] 1 ) E. u  e.  ( ( nei `  II ) `
 { y } ) ( ( u  X.  { x }
)  C_  M  <->  ( u  X.  { t } ) 
C_  M )  -> 
( ( ( 0 [,] 1 )  X. 
{ x } ) 
C_  M  ->  (
( 0 [,] 1
)  X.  { t } )  C_  M
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1842   A.wral 2754   E.wrex 2755    C_ wss 3414   {csn 3972   <.cop 3978    X. cxp 4821   ` cfv 5569  (class class class)co 6278   0cc0 9522   1c1 9523   [,]cicc 11585   Topctop 19686   neicnei 19891   IIcii 21671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-icc 11589  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-topgen 15058  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-top 19691  df-bases 19693  df-topon 19694  df-nei 19892  df-ii 21673
This theorem is referenced by:  cvmlift2lem12  29611
  Copyright terms: Public domain W3C validator