Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2 Structured version   Unicode version

Theorem cvmlift2 27203
Description: A two-dimensional version of cvmlift 27186. There is a unique lift of functions on the unit square 
II  tX  II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
Assertion
Ref Expression
cvmlift2  |-  ( ph  ->  E! f  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  f
)  =  G  /\  ( 0 f 0 )  =  P ) )
Distinct variable groups:    f, F    ph, f    f, J    f, G    C, f    P, f
Allowed substitution hint:    B( f)

Proof of Theorem cvmlift2
Dummy variables  g  h  k  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2  |-  B  = 
U. C
2 cvmlift2.f . 2  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
3 cvmlift2.g . 2  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
4 cvmlift2.p . 2  |-  ( ph  ->  P  e.  B )
5 cvmlift2.i . 2  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
6 coeq2 4996 . . . . 5  |-  ( h  =  g  ->  ( F  o.  h )  =  ( F  o.  g ) )
7 oveq1 6096 . . . . . . 7  |-  ( w  =  z  ->  (
w G 0 )  =  ( z G 0 ) )
87cbvmptv 4381 . . . . . 6  |-  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( z G 0 ) )
98a1i 11 . . . . 5  |-  ( h  =  g  ->  (
w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) )
106, 9eqeq12d 2455 . . . 4  |-  ( h  =  g  ->  (
( F  o.  h
)  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  <-> 
( F  o.  g
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) ) ) )
11 fveq1 5688 . . . . 5  |-  ( h  =  g  ->  (
h `  0 )  =  ( g ` 
0 ) )
1211eqeq1d 2449 . . . 4  |-  ( h  =  g  ->  (
( h `  0
)  =  P  <->  ( g `  0 )  =  P ) )
1310, 12anbi12d 710 . . 3  |-  ( h  =  g  ->  (
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P )  <->  ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1
)  |->  ( z G 0 ) )  /\  ( g `  0
)  =  P ) ) )
1413cbvriotav 6061 . 2  |-  ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1
)  |->  ( w G 0 ) )  /\  ( h `  0
)  =  P ) )  =  ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1
)  |->  ( z G 0 ) )  /\  ( g `  0
)  =  P ) )
15 coeq2 4996 . . . . . . . 8  |-  ( k  =  g  ->  ( F  o.  k )  =  ( F  o.  g ) )
16 oveq2 6097 . . . . . . . . . 10  |-  ( w  =  z  ->  (
u G w )  =  ( u G z ) )
1716cbvmptv 4381 . . . . . . . . 9  |-  ( w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  =  ( z  e.  ( 0 [,] 1
)  |->  ( u G z ) )
1817a1i 11 . . . . . . . 8  |-  ( k  =  g  ->  (
w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( u G z ) ) )
1915, 18eqeq12d 2455 . . . . . . 7  |-  ( k  =  g  ->  (
( F  o.  k
)  =  ( w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  <-> 
( F  o.  g
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( u G z ) ) ) )
20 fveq1 5688 . . . . . . . 8  |-  ( k  =  g  ->  (
k `  0 )  =  ( g ` 
0 ) )
2120eqeq1d 2449 . . . . . . 7  |-  ( k  =  g  ->  (
( k `  0
)  =  ( (
iota_ h  e.  (
II  Cn  C )
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u )  <->  ( g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  u ) ) )
2219, 21anbi12d 710 . . . . . 6  |-  ( k  =  g  ->  (
( ( F  o.  k )  =  ( w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  /\  ( k `
 0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  u ) )  <->  ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1
)  |->  ( u G z ) )  /\  ( g `  0
)  =  ( (
iota_ h  e.  (
II  Cn  C )
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u ) ) ) )
2322cbvriotav 6061 . . . . 5  |-  ( iota_ k  e.  ( II  Cn  C ) ( ( F  o.  k )  =  ( w  e.  ( 0 [,] 1
)  |->  ( u G w ) )  /\  ( k `  0
)  =  ( (
iota_ h  e.  (
II  Cn  C )
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u ) ) )  =  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( u G z ) )  /\  (
g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1
)  |->  ( w G 0 ) )  /\  ( h `  0
)  =  P ) ) `  u ) ) )
24 oveq1 6096 . . . . . . . . 9  |-  ( u  =  x  ->  (
u G z )  =  ( x G z ) )
2524mpteq2dv 4377 . . . . . . . 8  |-  ( u  =  x  ->  (
z  e.  ( 0 [,] 1 )  |->  ( u G z ) )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) )
2625eqeq2d 2452 . . . . . . 7  |-  ( u  =  x  ->  (
( F  o.  g
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( u G z ) )  <-> 
( F  o.  g
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) ) ) )
27 fveq2 5689 . . . . . . . 8  |-  ( u  =  x  ->  (
( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  x ) )
2827eqeq2d 2452 . . . . . . 7  |-  ( u  =  x  ->  (
( g `  0
)  =  ( (
iota_ h  e.  (
II  Cn  C )
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u )  <->  ( g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  x ) ) )
2926, 28anbi12d 710 . . . . . 6  |-  ( u  =  x  ->  (
( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 )  |->  ( u G z ) )  /\  ( g `
 0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  u ) )  <->  ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( g `  0
)  =  ( (
iota_ h  e.  (
II  Cn  C )
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  x ) ) ) )
3029riotabidv 6052 . . . . 5  |-  ( u  =  x  ->  ( iota_ g  e.  ( II 
Cn  C ) ( ( F  o.  g
)  =  ( z  e.  ( 0 [,] 1 )  |->  ( u G z ) )  /\  ( g ` 
0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u ) ) )  =  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1
)  |->  ( w G 0 ) )  /\  ( h `  0
)  =  P ) ) `  x ) ) ) )
3123, 30syl5eq 2485 . . . 4  |-  ( u  =  x  ->  ( iota_ k  e.  ( II 
Cn  C ) ( ( F  o.  k
)  =  ( w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  /\  ( k ` 
0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  u ) ) )  =  ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1
)  |->  ( w G 0 ) )  /\  ( h `  0
)  =  P ) ) `  x ) ) ) )
3231fveq1d 5691 . . 3  |-  ( u  =  x  ->  (
( iota_ k  e.  ( II  Cn  C ) ( ( F  o.  k )  =  ( w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  /\  ( k `
 0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  u ) ) ) `
 v )  =  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1
)  |->  ( w G 0 ) )  /\  ( h `  0
)  =  P ) ) `  x ) ) ) `  v
) )
33 fveq2 5689 . . 3  |-  ( v  =  y  ->  (
( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 )  |->  ( x G z ) )  /\  ( g `
 0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  x ) ) ) `
 v )  =  ( ( iota_ g  e.  ( II  Cn  C
) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
g `  0 )  =  ( ( iota_ h  e.  ( II  Cn  C ) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1
)  |->  ( w G 0 ) )  /\  ( h `  0
)  =  P ) ) `  x ) ) ) `  y
) )
3432, 33cbvmpt2v 6164 . 2  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( (
iota_ k  e.  (
II  Cn  C )
( ( F  o.  k )  =  ( w  e.  ( 0 [,] 1 )  |->  ( u G w ) )  /\  ( k `
 0 )  =  ( ( iota_ h  e.  ( II  Cn  C
) ( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 ) 
|->  ( w G 0 ) )  /\  (
h `  0 )  =  P ) ) `  u ) ) ) `
 v ) )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( iota_ g  e.  ( II  Cn  C ) ( ( F  o.  g )  =  ( z  e.  ( 0 [,] 1
)  |->  ( x G z ) )  /\  ( g `  0
)  =  ( (
iota_ h  e.  (
II  Cn  C )
( ( F  o.  h )  =  ( w  e.  ( 0 [,] 1 )  |->  ( w G 0 ) )  /\  ( h `
 0 )  =  P ) ) `  x ) ) ) `
 y ) )
351, 2, 3, 4, 5, 14, 34cvmlift2lem13 27202 1  |-  ( ph  ->  E! f  e.  ( ( II  tX  II )  Cn  C ) ( ( F  o.  f
)  =  G  /\  ( 0 f 0 )  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E!wreu 2715   U.cuni 4089    e. cmpt 4348    o. ccom 4842   ` cfv 5416   iota_crio 6049  (class class class)co 6089    e. cmpt2 6091   0cc0 9280   1c1 9281   [,]cicc 11301    Cn ccn 18826    tX ctx 19131   IIcii 20449   CovMap ccvm 27142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358  ax-addf 9359  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-iin 4172  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-supp 6689  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-ec 7101  df-map 7214  df-ixp 7262  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-fsupp 7619  df-fi 7659  df-sup 7689  df-oi 7722  df-card 8107  df-cda 8335  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-q 10952  df-rp 10990  df-xneg 11087  df-xadd 11088  df-xmul 11089  df-ioo 11302  df-ico 11304  df-icc 11305  df-fz 11436  df-fzo 11547  df-fl 11640  df-seq 11805  df-exp 11864  df-hash 12102  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-clim 12964  df-sum 13162  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-sca 14252  df-vsca 14253  df-ip 14254  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-hom 14260  df-cco 14261  df-rest 14359  df-topn 14360  df-0g 14378  df-gsum 14379  df-topgen 14380  df-pt 14381  df-prds 14384  df-xrs 14438  df-qtop 14443  df-imas 14444  df-xps 14446  df-mre 14522  df-mrc 14523  df-acs 14525  df-mnd 15413  df-submnd 15463  df-mulg 15546  df-cntz 15833  df-cmn 16277  df-psmet 17807  df-xmet 17808  df-met 17809  df-bl 17810  df-mopn 17811  df-cnfld 17817  df-top 18501  df-bases 18503  df-topon 18504  df-topsp 18505  df-cld 18621  df-ntr 18622  df-cls 18623  df-nei 18700  df-cn 18829  df-cnp 18830  df-cmp 18988  df-con 19014  df-lly 19068  df-nlly 19069  df-tx 19133  df-hmeo 19326  df-xms 19893  df-ms 19894  df-tms 19895  df-ii 20451  df-htpy 20540  df-phtpy 20541  df-phtpc 20562  df-pcon 27108  df-scon 27109  df-cvm 27143
This theorem is referenced by:  cvmliftpht  27205
  Copyright terms: Public domain W3C validator