Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfolem Structured version   Unicode version

Theorem cvmfolem 27173
Description: Lemma for cvmfo 27194. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmseu.1  |-  B  = 
U. C
cvmfolem.2  |-  X  = 
U. J
Assertion
Ref Expression
cvmfolem  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )
Distinct variable groups:    k, s, u, v, C    k, F, s, u, v    k, J, s, u, v    v, B
Allowed substitution hints:    B( u, k, s)    S( v, u, k, s)    X( v, u, k, s)

Proof of Theorem cvmfolem
Dummy variables  t  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmcn 27156 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
2 cvmseu.1 . . . 4  |-  B  = 
U. C
3 cvmfolem.2 . . . 4  |-  X  = 
U. J
42, 3cnf 18855 . . 3  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> X )
51, 4syl 16 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  F : B
--> X )
6 cvmcov.1 . . . . . 6  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
76, 3cvmcov 27157 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  x  e.  X )  ->  E. z  e.  J  ( x  e.  z  /\  ( S `  z )  =/=  (/) ) )
87ex 434 . . . 4  |-  ( F  e.  ( C CovMap  J
)  ->  ( x  e.  X  ->  E. z  e.  J  ( x  e.  z  /\  ( S `  z )  =/=  (/) ) ) )
9 n0 3651 . . . . . . 7  |-  ( ( S `  z )  =/=  (/)  <->  E. w  w  e.  ( S `  z
) )
106cvmsn0 27162 . . . . . . . . . . . 12  |-  ( w  e.  ( S `  z )  ->  w  =/=  (/) )
1110ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  w  =/=  (/) )
12 n0 3651 . . . . . . . . . . 11  |-  ( w  =/=  (/)  <->  E. t  t  e.  w )
1311, 12sylib 196 . . . . . . . . . 10  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  E. t 
t  e.  w )
14 simprlr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  w  e.  ( S `  z ) )
156cvmsss 27161 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( S `  z )  ->  w  C_  C )
1614, 15syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  w  C_  C )
17 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  e.  w )
1816, 17sseldd 3362 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  e.  C )
19 elssuni 4126 . . . . . . . . . . . . . . . 16  |-  ( t  e.  C  ->  t  C_ 
U. C )
2018, 19syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  C_  U. C )
2120, 2syl6sseqr 3408 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
t  C_  B )
22 simpll 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  F  e.  ( C CovMap  J ) )
236cvmsf1o 27166 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  ( C CovMap  J )  /\  w  e.  ( S `  z
)  /\  t  e.  w )  ->  ( F  |`  t ) : t -1-1-onto-> z )
2422, 14, 17, 23syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( F  |`  t
) : t -1-1-onto-> z )
25 f1ocnv 5658 . . . . . . . . . . . . . . . 16  |-  ( ( F  |`  t ) : t -1-1-onto-> z  ->  `' ( F  |`  t ) : z -1-1-onto-> t )
26 f1of 5646 . . . . . . . . . . . . . . . 16  |-  ( `' ( F  |`  t
) : z -1-1-onto-> t  ->  `' ( F  |`  t ) : z --> t )
2724, 25, 263syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  `' ( F  |`  t ) : z --> t )
28 simprll 761 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  x  e.  z )
2927, 28ffvelrnd 5849 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( `' ( F  |`  t ) `  x
)  e.  t )
3021, 29sseldd 3362 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( `' ( F  |`  t ) `  x
)  e.  B )
31 f1ocnvfv2 5989 . . . . . . . . . . . . . . 15  |-  ( ( ( F  |`  t
) : t -1-1-onto-> z  /\  x  e.  z )  ->  ( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  x )
3224, 28, 31syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  x )
33 fvres 5709 . . . . . . . . . . . . . . 15  |-  ( ( `' ( F  |`  t ) `  x
)  e.  t  -> 
( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  ( F `  ( `' ( F  |`  t
) `  x )
) )
3429, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  -> 
( ( F  |`  t ) `  ( `' ( F  |`  t ) `  x
) )  =  ( F `  ( `' ( F  |`  t
) `  x )
) )
3532, 34eqtr3d 2477 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  x  =  ( F `  ( `' ( F  |`  t ) `  x
) ) )
36 fveq2 5696 . . . . . . . . . . . . . . 15  |-  ( y  =  ( `' ( F  |`  t ) `  x )  ->  ( F `  y )  =  ( F `  ( `' ( F  |`  t ) `  x
) ) )
3736eqeq2d 2454 . . . . . . . . . . . . . 14  |-  ( y  =  ( `' ( F  |`  t ) `  x )  ->  (
x  =  ( F `
 y )  <->  x  =  ( F `  ( `' ( F  |`  t
) `  x )
) ) )
3837rspcev 3078 . . . . . . . . . . . . 13  |-  ( ( ( `' ( F  |`  t ) `  x
)  e.  B  /\  x  =  ( F `  ( `' ( F  |`  t ) `  x
) ) )  ->  E. y  e.  B  x  =  ( F `  y ) )
3930, 35, 38syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( ( x  e.  z  /\  w  e.  ( S `  z
) )  /\  t  e.  w ) )  ->  E. y  e.  B  x  =  ( F `  y ) )
4039expr 615 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  (
t  e.  w  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4140exlimdv 1690 . . . . . . . . . 10  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  ( E. t  t  e.  w  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4213, 41mpd 15 . . . . . . . . 9  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  ( x  e.  z  /\  w  e.  ( S `  z ) ) )  ->  E. y  e.  B  x  =  ( F `  y ) )
4342expr 615 . . . . . . . 8  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  x  e.  z
)  ->  ( w  e.  ( S `  z
)  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4443exlimdv 1690 . . . . . . 7  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  x  e.  z
)  ->  ( E. w  w  e.  ( S `  z )  ->  E. y  e.  B  x  =  ( F `  y ) ) )
459, 44syl5bi 217 . . . . . 6  |-  ( ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  /\  x  e.  z
)  ->  ( ( S `  z )  =/=  (/)  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4645expimpd 603 . . . . 5  |-  ( ( F  e.  ( C CovMap  J )  /\  z  e.  J )  ->  (
( x  e.  z  /\  ( S `  z )  =/=  (/) )  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4746rexlimdva 2846 . . . 4  |-  ( F  e.  ( C CovMap  J
)  ->  ( E. z  e.  J  (
x  e.  z  /\  ( S `  z )  =/=  (/) )  ->  E. y  e.  B  x  =  ( F `  y ) ) )
488, 47syld 44 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  ( x  e.  X  ->  E. y  e.  B  x  =  ( F `  y ) ) )
4948ralrimiv 2803 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  A. x  e.  X  E. y  e.  B  x  =  ( F `  y ) )
50 dffo3 5863 . 2  |-  ( F : B -onto-> X  <->  ( F : B --> X  /\  A. x  e.  X  E. y  e.  B  x  =  ( F `  y ) ) )
515, 49, 50sylanbrc 664 1  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721   {crab 2724    \ cdif 3330    i^i cin 3332    C_ wss 3333   (/)c0 3642   ~Pcpw 3865   {csn 3882   U.cuni 4096    e. cmpt 4355   `'ccnv 4844    |` cres 4847   "cima 4848   -->wf 5419   -onto->wfo 5421   -1-1-onto->wf1o 5422   ` cfv 5423  (class class class)co 6096   ↾t crest 14364    Cn ccn 18833   Homeochmeo 19331   CovMap ccvm 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-fin 7319  df-fi 7666  df-rest 14366  df-topgen 14387  df-top 18508  df-bases 18510  df-topon 18511  df-cn 18836  df-hmeo 19333  df-cvm 27150
This theorem is referenced by:  cvmfo  27194
  Copyright terms: Public domain W3C validator