Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfo Structured version   Unicode version

Theorem cvmfo 29009
Description: A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmlift.1  |-  B  = 
U. C
cvmfo.2  |-  X  = 
U. J
Assertion
Ref Expression
cvmfo  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )

Proof of Theorem cvmfo
Dummy variables  a 
b  c  d  k  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . 3  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) } )  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) } )
21cvmscbv 28967 . 2  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) } )  =  ( a  e.  J  |->  { b  e.  ( ~P C  \  { (/) } )  |  ( U. b  =  ( `' F " a )  /\  A. c  e.  b  ( A. d  e.  ( b  \  { c } ) ( c  i^i  d )  =  (/)  /\  ( F  |`  c )  e.  ( ( Ct  c ) Homeo ( Jt  a ) ) ) ) } )
3 cvmlift.1 . 2  |-  B  = 
U. C
4 cvmfo.2 . 2  |-  X  = 
U. J
52, 3, 4cvmfolem 28988 1  |-  ( F  e.  ( C CovMap  J
)  ->  F : B -onto-> X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   {crab 2808    \ cdif 3458    i^i cin 3460   (/)c0 3783   ~Pcpw 3999   {csn 4016   U.cuni 4235    |-> cmpt 4497   `'ccnv 4987    |` cres 4990   "cima 4991   -onto->wfo 5568  (class class class)co 6270   ↾t crest 14910   Homeochmeo 20420   CovMap ccvm 28964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-fin 7513  df-fi 7863  df-rest 14912  df-topgen 14933  df-top 19566  df-bases 19568  df-topon 19569  df-cn 19895  df-hmeo 20422  df-cvm 28965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator