Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcov Structured version   Unicode version

Theorem cvmcov 27151
Description: Property of a covering map. In order to make the covering property more manageable, we define here the set  S ( k ) of all even coverings of an open set  k in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmcov.2  |-  X  = 
U. J
Assertion
Ref Expression
cvmcov  |-  ( ( F  e.  ( C CovMap  J )  /\  P  e.  X )  ->  E. x  e.  J  ( P  e.  x  /\  ( S `  x )  =/=  (/) ) )
Distinct variable groups:    k, s, u, v, x, C    k, F, s, u, v, x    P, k, x    k, J, s, u, v, x   
x, S    x, X
Allowed substitution hints:    P( v, u, s)    S( v, u, k, s)    X( v, u, k, s)

Proof of Theorem cvmcov
StepHypRef Expression
1 cvmcov.1 . . . . 5  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
2 cvmcov.2 . . . . 5  |-  X  = 
U. J
31, 2iscvm 27147 . . . 4  |-  ( F  e.  ( C CovMap  J
)  <->  ( ( C  e.  Top  /\  J  e.  Top  /\  F  e.  ( C  Cn  J
) )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) ) )
43simprbi 464 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `  k )  =/=  (/) ) )
5 eleq1 2502 . . . . . 6  |-  ( x  =  P  ->  (
x  e.  k  <->  P  e.  k ) )
65anbi1d 704 . . . . 5  |-  ( x  =  P  ->  (
( x  e.  k  /\  ( S `  k )  =/=  (/) )  <->  ( P  e.  k  /\  ( S `  k )  =/=  (/) ) ) )
76rexbidv 2735 . . . 4  |-  ( x  =  P  ->  ( E. k  e.  J  ( x  e.  k  /\  ( S `  k
)  =/=  (/) )  <->  E. k  e.  J  ( P  e.  k  /\  ( S `  k )  =/=  (/) ) ) )
87rspcv 3068 . . 3  |-  ( P  e.  X  ->  ( A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `  k
)  =/=  (/) )  ->  E. k  e.  J  ( P  e.  k  /\  ( S `  k
)  =/=  (/) ) ) )
94, 8mpan9 469 . 2  |-  ( ( F  e.  ( C CovMap  J )  /\  P  e.  X )  ->  E. k  e.  J  ( P  e.  k  /\  ( S `  k )  =/=  (/) ) )
10 nfv 1673 . . . 4  |-  F/ k  P  e.  x
11 nfmpt1 4380 . . . . . . 7  |-  F/_ k
( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
121, 11nfcxfr 2575 . . . . . 6  |-  F/_ k S
13 nfcv 2578 . . . . . 6  |-  F/_ k
x
1412, 13nffv 5697 . . . . 5  |-  F/_ k
( S `  x
)
15 nfcv 2578 . . . . 5  |-  F/_ k (/)
1614, 15nfne 2702 . . . 4  |-  F/ k ( S `  x
)  =/=  (/)
1710, 16nfan 1861 . . 3  |-  F/ k ( P  e.  x  /\  ( S `  x
)  =/=  (/) )
18 nfv 1673 . . 3  |-  F/ x
( P  e.  k  /\  ( S `  k )  =/=  (/) )
19 eleq2 2503 . . . 4  |-  ( x  =  k  ->  ( P  e.  x  <->  P  e.  k ) )
20 fveq2 5690 . . . . 5  |-  ( x  =  k  ->  ( S `  x )  =  ( S `  k ) )
2120neeq1d 2620 . . . 4  |-  ( x  =  k  ->  (
( S `  x
)  =/=  (/)  <->  ( S `  k )  =/=  (/) ) )
2219, 21anbi12d 710 . . 3  |-  ( x  =  k  ->  (
( P  e.  x  /\  ( S `  x
)  =/=  (/) )  <->  ( P  e.  k  /\  ( S `  k )  =/=  (/) ) ) )
2317, 18, 22cbvrex 2943 . 2  |-  ( E. x  e.  J  ( P  e.  x  /\  ( S `  x )  =/=  (/) )  <->  E. k  e.  J  ( P  e.  k  /\  ( S `  k )  =/=  (/) ) )
249, 23sylibr 212 1  |-  ( ( F  e.  ( C CovMap  J )  /\  P  e.  X )  ->  E. x  e.  J  ( P  e.  x  /\  ( S `  x )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715   {crab 2718    \ cdif 3324    i^i cin 3326   (/)c0 3636   ~Pcpw 3859   {csn 3876   U.cuni 4090    e. cmpt 4349   `'ccnv 4838    |` cres 4841   "cima 4842   ` cfv 5417  (class class class)co 6090   ↾t crest 14358   Topctop 18497    Cn ccn 18827   Homeochmeo 19325   CovMap ccvm 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-cvm 27144
This theorem is referenced by:  cvmcov2  27163  cvmopnlem  27166  cvmfolem  27167  cvmliftmolem2  27170  cvmliftlem15  27186  cvmlift2lem10  27200  cvmlift3lem8  27214
  Copyright terms: Public domain W3C validator