Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmcn Structured version   Unicode version

Theorem cvmcn 28347
Description: A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.)
Assertion
Ref Expression
cvmcn  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )

Proof of Theorem cvmcn
Dummy variables  k 
s  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) } )  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) } )
2 eqid 2467 . . . 4  |-  U. J  =  U. J
31, 2iscvm 28344 . . 3  |-  ( F  e.  ( C CovMap  J
)  <->  ( ( C  e.  Top  /\  J  e.  Top  /\  F  e.  ( C  Cn  J
) )  /\  A. x  e.  U. J E. k  e.  J  (
x  e.  k  /\  ( ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) Homeo ( Jt  k ) ) ) ) } ) `  k
)  =/=  (/) ) ) )
43simplbi 460 . 2  |-  ( F  e.  ( C CovMap  J
)  ->  ( C  e.  Top  /\  J  e. 
Top  /\  F  e.  ( C  Cn  J
) ) )
54simp3d 1010 1  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    \ cdif 3473    i^i cin 3475   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245    |-> cmpt 4505   `'ccnv 4998    |` cres 5001   "cima 5002   ` cfv 5586  (class class class)co 6282   ↾t crest 14672   Topctop 19161    Cn ccn 19491   Homeochmeo 19989   CovMap ccvm 28340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-cvm 28341
This theorem is referenced by:  cvmsss2  28359  cvmseu  28361  cvmopnlem  28363  cvmfolem  28364  cvmliftmolem1  28366  cvmliftmolem2  28367  cvmliftlem6  28375  cvmliftlem7  28376  cvmliftlem8  28377  cvmliftlem9  28378  cvmlift2lem7  28394  cvmlift2lem9  28396  cvmliftphtlem  28402  cvmlift3lem5  28408  cvmlift3lem6  28409  cvmlift3lem9  28412
  Copyright terms: Public domain W3C validator