Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr8 Structured version   Unicode version

Theorem cvlsupr8 33302
Description: Consequence of superposition condition  ( P  .\/  R
)  =  ( Q 
.\/  R ). (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr5.a  |-  A  =  ( Atoms `  K )
cvlsupr5.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
cvlsupr8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )

Proof of Theorem cvlsupr8
StepHypRef Expression
1 cvllat 33279 . . . 4  |-  ( K  e.  CvLat  ->  K  e.  Lat )
213ad2ant1 1009 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  K  e.  Lat )
3 simp22 1022 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  Q  e.  A )
4 eqid 2451 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
5 cvlsupr5.a . . . . 5  |-  A  =  ( Atoms `  K )
64, 5atbase 33242 . . . 4  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
73, 6syl 16 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  Q  e.  ( Base `  K )
)
8 simp23 1023 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  e.  A )
94, 5atbase 33242 . . . 4  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
108, 9syl 16 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  e.  ( Base `  K )
)
11 cvlsupr5.j . . . 4  |-  .\/  =  ( join `  K )
124, 11latjcom 15333 . . 3  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( Q  .\/  R )  =  ( R  .\/  Q
) )
132, 7, 10, 12syl3anc 1219 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( Q  .\/  R )  =  ( R  .\/  Q ) )
14 simp3r 1017 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  R ) )
155, 11cvlsupr7 33301 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  Q ) )
1613, 14, 153eqtr4rd 2503 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  ( P  .\/  Q )  =  ( P  .\/  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   ` cfv 5518  (class class class)co 6192   Basecbs 14278   joincjn 15218   Latclat 15319   Atomscatm 33216   CvLatclc 33218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-poset 15220  df-plt 15232  df-lub 15248  df-glb 15249  df-join 15250  df-meet 15251  df-p0 15313  df-lat 15320  df-covers 33219  df-ats 33220  df-atl 33251  df-cvlat 33275
This theorem is referenced by:  4atexlemswapqr  34015  cdleme21b  34278
  Copyright terms: Public domain W3C validator