Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr6 Structured version   Unicode version

Theorem cvlsupr6 34021
Description: Consequence of superposition condition  ( P  .\/  R
)  =  ( Q 
.\/  R ). (Contributed by NM, 9-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr5.a  |-  A  =  ( Atoms `  K )
cvlsupr5.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
cvlsupr6  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  =/=  Q )

Proof of Theorem cvlsupr6
StepHypRef Expression
1 cvlsupr5.a . . . . . 6  |-  A  =  ( Atoms `  K )
2 eqid 2462 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
3 cvlsupr5.j . . . . . 6  |-  .\/  =  ( join `  K )
41, 2, 3cvlsupr2 34017 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R ( le
`  K ) ( P  .\/  Q ) ) ) )
5 simp2 992 . . . . 5  |-  ( ( R  =/=  P  /\  R  =/=  Q  /\  R
( le `  K
) ( P  .\/  Q ) )  ->  R  =/=  Q )
64, 5syl6bi 228 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  ->  R  =/=  Q ) )
763exp 1190 . . 3  |-  ( K  e.  CvLat  ->  ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  ->  ( P  =/=  Q  ->  ( ( P  .\/  R )  =  ( Q 
.\/  R )  ->  R  =/=  Q ) ) ) )
87imp4a 589 . 2  |-  ( K  e.  CvLat  ->  ( ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  ->  ( ( P  =/= 
Q  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  ->  R  =/=  Q ) ) )
983imp 1185 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  =/=  Q  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) ) )  ->  R  =/=  Q )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   class class class wbr 4442   ` cfv 5581  (class class class)co 6277   lecple 14553   joincjn 15422   Atomscatm 33937   CvLatclc 33939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-poset 15424  df-plt 15436  df-lub 15452  df-glb 15453  df-join 15454  df-meet 15455  df-p0 15517  df-lat 15524  df-covers 33940  df-ats 33941  df-atl 33972  df-cvlat 33996
This theorem is referenced by:  4atexlemnclw  34743  4atexlemcnd  34745  cdleme21a  34998
  Copyright terms: Public domain W3C validator