Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexch2 Structured version   Unicode version

Theorem cvlexch2 33256
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-May-2012.)
Hypotheses
Ref Expression
cvlexch.b  |-  B  =  ( Base `  K
)
cvlexch.l  |-  .<_  =  ( le `  K )
cvlexch.j  |-  .\/  =  ( join `  K )
cvlexch.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlexch2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( Q  .\/  X )  ->  Q  .<_  ( P 
.\/  X ) ) )

Proof of Theorem cvlexch2
StepHypRef Expression
1 cvlexch.b . . 3  |-  B  =  ( Base `  K
)
2 cvlexch.l . . 3  |-  .<_  =  ( le `  K )
3 cvlexch.j . . 3  |-  .\/  =  ( join `  K )
4 cvlexch.a . . 3  |-  A  =  ( Atoms `  K )
51, 2, 3, 4cvlexch1 33255 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( X  .\/  Q )  ->  Q  .<_  ( X 
.\/  P ) ) )
6 cvllat 33253 . . . . 5  |-  ( K  e.  CvLat  ->  K  e.  Lat )
763ad2ant1 1009 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  K  e.  Lat )
8 simp22 1022 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  Q  e.  A
)
91, 4atbase 33216 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
108, 9syl 16 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  Q  e.  B
)
11 simp23 1023 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  X  e.  B
)
121, 3latjcom 15317 . . . 4  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  X  e.  B )  ->  ( Q  .\/  X
)  =  ( X 
.\/  Q ) )
137, 10, 11, 12syl3anc 1219 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( Q  .\/  X )  =  ( X 
.\/  Q ) )
1413breq2d 4388 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( Q  .\/  X )  <-> 
P  .<_  ( X  .\/  Q ) ) )
15 simp21 1021 . . . . 5  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  P  e.  A
)
161, 4atbase 33216 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
1715, 16syl 16 . . . 4  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  P  e.  B
)
181, 3latjcom 15317 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  X  e.  B )  ->  ( P  .\/  X
)  =  ( X 
.\/  P ) )
197, 17, 11, 18syl3anc 1219 . . 3  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .\/  X )  =  ( X 
.\/  P ) )
2019breq2d 4388 . 2  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( Q  .<_  ( P  .\/  X )  <-> 
Q  .<_  ( X  .\/  P ) ) )
215, 14, 203imtr4d 268 1  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B )  /\  -.  P  .<_  X )  ->  ( P  .<_  ( Q  .\/  X )  ->  Q  .<_  ( P 
.\/  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 965    = wceq 1370    e. wcel 1757   class class class wbr 4376   ` cfv 5502  (class class class)co 6176   Basecbs 14262   lecple 14333   joincjn 15202   Latclat 15303   Atomscatm 33190   CvLatclc 33192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-lub 15232  df-join 15234  df-lat 15304  df-ats 33194  df-atl 33225  df-cvlat 33249
This theorem is referenced by:  hlexch2  33309
  Copyright terms: Public domain W3C validator