Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvrp Structured version   Unicode version

Theorem cvlcvrp 32644
Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 27889 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvrp.b  |-  B  =  ( Base `  K
)
cvlcvrp.j  |-  .\/  =  ( join `  K )
cvlcvrp.m  |-  ./\  =  ( meet `  K )
cvlcvrp.z  |-  .0.  =  ( 0. `  K )
cvlcvrp.c  |-  C  =  (  <o  `  K )
cvlcvrp.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlcvrp  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
( X  ./\  P
)  =  .0.  <->  X C
( X  .\/  P
) ) )

Proof of Theorem cvlcvrp
StepHypRef Expression
1 simp13 1037 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  CvLat )
2 cvllat 32630 . . . . 5  |-  ( K  e.  CvLat  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  Lat )
4 simp2 1006 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  X  e.  B )
5 cvlcvrp.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cvlcvrp.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 32593 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
873ad2ant3 1028 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  P  e.  B )
9 cvlcvrp.m . . . . 5  |-  ./\  =  ( meet `  K )
105, 9latmcom 16265 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  ./\  P
)  =  ( P 
./\  X ) )
113, 4, 8, 10syl3anc 1264 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( X  ./\  P )  =  ( P  ./\  X
) )
1211eqeq1d 2422 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
( X  ./\  P
)  =  .0.  <->  ( P  ./\ 
X )  =  .0.  ) )
13 cvlatl 32629 . . . 4  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
141, 13syl 17 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  K  e.  AtLat )
15 simp3 1007 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  P  e.  A )
16 eqid 2420 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
17 cvlcvrp.z . . . 4  |-  .0.  =  ( 0. `  K )
185, 16, 9, 17, 6atnle 32621 . . 3  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  X  e.  B )  ->  ( -.  P ( le `  K ) X  <->  ( P  ./\ 
X )  =  .0.  ) )
1914, 15, 4, 18syl3anc 1264 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P ( le `  K ) X  <->  ( P  ./\ 
X )  =  .0.  ) )
20 cvlcvrp.j . . 3  |-  .\/  =  ( join `  K )
21 cvlcvrp.c . . 3  |-  C  =  (  <o  `  K )
225, 16, 20, 21, 6cvlcvr1 32643 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P ( le `  K ) X  <->  X C
( X  .\/  P
) ) )
2312, 19, 223bitr2d 284 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  X  e.  B  /\  P  e.  A )  ->  (
( X  ./\  P
)  =  .0.  <->  X C
( X  .\/  P
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1867   class class class wbr 4417   ` cfv 5592  (class class class)co 6296   Basecbs 15073   lecple 15149   joincjn 16133   meetcmee 16134   0.cp0 16227   Latclat 16235   CLatccla 16297   OMLcoml 32479    <o ccvr 32566   Atomscatm 32567   AtLatcal 32568   CvLatclc 32569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 16117  df-poset 16135  df-plt 16148  df-lub 16164  df-glb 16165  df-join 16166  df-meet 16167  df-p0 16229  df-lat 16236  df-clat 16298  df-oposet 32480  df-ol 32482  df-oml 32483  df-covers 32570  df-ats 32571  df-atl 32602  df-cvlat 32626
This theorem is referenced by:  cvlatcvr1  32645  cvrp  32719
  Copyright terms: Public domain W3C validator