Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatcvr2 Structured version   Unicode version

Theorem cvlatcvr2 32360
Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatcvr1.j  |-  .\/  =  ( join `  K )
cvlatcvr1.c  |-  C  =  (  <o  `  K )
cvlatcvr1.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cvlatcvr2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( Q  .\/  P
) ) )

Proof of Theorem cvlatcvr2
StepHypRef Expression
1 cvlatcvr1.j . . 3  |-  .\/  =  ( join `  K )
2 cvlatcvr1.c . . 3  |-  C  =  (  <o  `  K )
3 cvlatcvr1.a . . 3  |-  A  =  ( Atoms `  K )
41, 2, 3cvlatcvr1 32359 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( P  .\/  Q
) ) )
5 simp13 1029 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  K  e.  CvLat )
6 cvllat 32344 . . . . 5  |-  ( K  e.  CvLat  ->  K  e.  Lat )
75, 6syl 17 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  K  e.  Lat )
8 eqid 2402 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
98, 3atbase 32307 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1093ad2ant2 1019 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  P  e.  ( Base `  K
) )
118, 3atbase 32307 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
12113ad2ant3 1020 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  Q  e.  ( Base `  K
) )
138, 1latjcom 16013 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
147, 10, 12, 13syl3anc 1230 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
1514breq2d 4407 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P C ( P  .\/  Q )  <->  P C ( Q 
.\/  P ) ) )
164, 15bitrd 253 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  =/=  Q  <->  P C
( Q  .\/  P
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   joincjn 15897   Latclat 15999   CLatccla 16061   OMLcoml 32193    <o ccvr 32280   Atomscatm 32281   CvLatclc 32283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340
This theorem is referenced by:  atcvr2  32435
  Copyright terms: Public domain W3C validator