HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr Unicode version

Theorem cvbr 23738
Description: Binary relation expressing  B covers  A, which means that  B is larger than  A and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem cvbr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2464 . . . . 5  |-  ( y  =  A  ->  (
y  e.  CH  <->  A  e.  CH ) )
21anbi1d 686 . . . 4  |-  ( y  =  A  ->  (
( y  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  z  e.  CH )
) )
3 psseq1 3394 . . . . 5  |-  ( y  =  A  ->  (
y  C.  z  <->  A  C.  z ) )
4 psseq1 3394 . . . . . . . 8  |-  ( y  =  A  ->  (
y  C.  x  <->  A  C.  x ) )
54anbi1d 686 . . . . . . 7  |-  ( y  =  A  ->  (
( y  C.  x  /\  x  C.  z )  <-> 
( A  C.  x  /\  x  C.  z ) ) )
65rexbidv 2687 . . . . . 6  |-  ( y  =  A  ->  ( E. x  e.  CH  (
y  C.  x  /\  x  C.  z )  <->  E. x  e.  CH  ( A  C.  x  /\  x  C.  z
) ) )
76notbid 286 . . . . 5  |-  ( y  =  A  ->  ( -.  E. x  e.  CH  ( y  C.  x  /\  x  C.  z )  <->  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z ) ) )
83, 7anbi12d 692 . . . 4  |-  ( y  =  A  ->  (
( y  C.  z  /\  -.  E. x  e. 
CH  ( y  C.  x  /\  x  C.  z
) )  <->  ( A  C.  z  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  z ) ) ) )
92, 8anbi12d 692 . . 3  |-  ( y  =  A  ->  (
( ( y  e. 
CH  /\  z  e.  CH )  /\  ( y 
C.  z  /\  -.  E. x  e.  CH  (
y  C.  x  /\  x  C.  z ) ) )  <->  ( ( A  e.  CH  /\  z  e.  CH )  /\  ( A  C.  z  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z ) ) ) ) )
10 eleq1 2464 . . . . 5  |-  ( z  =  B  ->  (
z  e.  CH  <->  B  e.  CH ) )
1110anbi2d 685 . . . 4  |-  ( z  =  B  ->  (
( A  e.  CH  /\  z  e.  CH )  <->  ( A  e.  CH  /\  B  e.  CH )
) )
12 psseq2 3395 . . . . 5  |-  ( z  =  B  ->  ( A  C.  z  <->  A  C.  B ) )
13 psseq2 3395 . . . . . . . 8  |-  ( z  =  B  ->  (
x  C.  z  <->  x  C.  B ) )
1413anbi2d 685 . . . . . . 7  |-  ( z  =  B  ->  (
( A  C.  x  /\  x  C.  z )  <-> 
( A  C.  x  /\  x  C.  B ) ) )
1514rexbidv 2687 . . . . . 6  |-  ( z  =  B  ->  ( E. x  e.  CH  ( A  C.  x  /\  x  C.  z )  <->  E. x  e.  CH  ( A  C.  x  /\  x  C.  B
) ) )
1615notbid 286 . . . . 5  |-  ( z  =  B  ->  ( -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z )  <->  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B
) ) )
1712, 16anbi12d 692 . . . 4  |-  ( z  =  B  ->  (
( A  C.  z  /\  -.  E. x  e. 
CH  ( A  C.  x  /\  x  C.  z
) )  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
1811, 17anbi12d 692 . . 3  |-  ( z  =  B  ->  (
( ( A  e. 
CH  /\  z  e.  CH )  /\  ( A 
C.  z  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  z ) ) )  <-> 
( ( A  e. 
CH  /\  B  e.  CH )  /\  ( A 
C.  B  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B ) ) ) ) )
19 df-cv 23735 . . 3  |-  <oH  =  { <. y ,  z >.  |  ( ( y  e.  CH  /\  z  e.  CH )  /\  (
y  C.  z  /\  -.  E. x  e.  CH  ( y  C.  x  /\  x  C.  z ) ) ) }
209, 18, 19brabg 4434 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( ( A  e.  CH  /\  B  e.  CH )  /\  ( A  C.  B  /\  -.  E. x  e.  CH  ( A  C.  x  /\  x  C.  B ) ) ) ) )
2120bianabs 851 1  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  <oH  B  <->  ( A  C.  B  /\  -.  E. x  e.  CH  ( A 
C.  x  /\  x  C.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667    C. wpss 3281   class class class wbr 4172   CHcch 22385    <oH ccv 22420
This theorem is referenced by:  cvbr2  23739  cvcon3  23740  cvpss  23741  cvnbtwn  23742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-cv 23735
  Copyright terms: Public domain W3C validator