MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrarn Structured version   Visualization version   Unicode version

Theorem cusgrarn 25266
Description: In a complete simple graph, the range of the edge function consists of all the pairs with different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Assertion
Ref Expression
cusgrarn  |-  ( V ComplUSGrph  E  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
Distinct variable groups:    x, E    x, V

Proof of Theorem cusgrarn
Dummy variables  a 
b  k  l  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscusgra0 25264 . 2  |-  ( V ComplUSGrph  E  ->  ( V USGrph  E  /\  A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E ) )
2 usgraf0 25154 . . 3  |-  ( V USGrph  E  ->  E : dom  E
-1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 } )
3 f1f 5792 . . . . . . 7  |-  ( E : dom  E -1-1-> {
x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  E : dom  E --> { x  e.  ~P V  |  ( # `  x
)  =  2 } )
4 df-f 5593 . . . . . . . 8  |-  ( E : dom  E --> { x  e.  ~P V  |  (
# `  x )  =  2 }  <->  ( E  Fn  dom  E  /\  ran  E 
C_  { x  e. 
~P V  |  (
# `  x )  =  2 } ) )
5 ssel 3412 . . . . . . . . 9  |-  ( ran 
E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 }  ->  ( e  e.  ran  E  ->  e  e.  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
65adantl 473 . . . . . . . 8  |-  ( ( E  Fn  dom  E  /\  ran  E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 } )  ->  ( e  e. 
ran  E  ->  e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
74, 6sylbi 200 . . . . . . 7  |-  ( E : dom  E --> { x  e.  ~P V  |  (
# `  x )  =  2 }  ->  ( e  e.  ran  E  ->  e  e.  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
83, 7syl 17 . . . . . 6  |-  ( E : dom  E -1-1-> {
x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  ( e  e. 
ran  E  ->  e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
98adantr 472 . . . . 5  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ( e  e. 
ran  E  ->  e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
10 fveq2 5879 . . . . . . . . . 10  |-  ( x  =  e  ->  ( # `
 x )  =  ( # `  e
) )
1110eqeq1d 2473 . . . . . . . . 9  |-  ( x  =  e  ->  (
( # `  x )  =  2  <->  ( # `  e
)  =  2 ) )
1211elrab 3184 . . . . . . . 8  |-  ( e  e.  { x  e. 
~P V  |  (
# `  x )  =  2 }  <->  ( e  e.  ~P V  /\  ( # `
 e )  =  2 ) )
13 vex 3034 . . . . . . . . . . 11  |-  e  e. 
_V
14 hash2prde 12672 . . . . . . . . . . 11  |-  ( ( e  e.  _V  /\  ( # `  e )  =  2 )  ->  E. a E. b ( a  =/=  b  /\  e  =  { a ,  b } ) )
1513, 14mpan 684 . . . . . . . . . 10  |-  ( (
# `  e )  =  2  ->  E. a E. b ( a  =/=  b  /\  e  =  { a ,  b } ) )
16 eleq1 2537 . . . . . . . . . . . . . 14  |-  ( e  =  { a ,  b }  ->  (
e  e.  ~P V  <->  { a ,  b }  e.  ~P V ) )
17 prex 4642 . . . . . . . . . . . . . . . . 17  |-  { a ,  b }  e.  _V
1817elpw 3948 . . . . . . . . . . . . . . . 16  |-  ( { a ,  b }  e.  ~P V  <->  { a ,  b }  C_  V )
19 vex 3034 . . . . . . . . . . . . . . . . 17  |-  a  e. 
_V
20 vex 3034 . . . . . . . . . . . . . . . . 17  |-  b  e. 
_V
2119, 20prss 4117 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  V  /\  b  e.  V )  <->  { a ,  b } 
C_  V )
2218, 21bitr4i 260 . . . . . . . . . . . . . . 15  |-  ( { a ,  b }  e.  ~P V  <->  ( a  e.  V  /\  b  e.  V ) )
23 simprl 772 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  { a ,  b }  /\  ( a  e.  V  /\  b  e.  V
) )  ->  a  e.  V )
2423anim1i 578 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( a  e.  V  /\  a  =/=  b
) )
25 eldifsn 4088 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  ( V  \  { b } )  <-> 
( a  e.  V  /\  a  =/=  b
) )
2624, 25sylibr 217 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
a  e.  ( V 
\  { b } ) )
27 simplrr 779 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
b  e.  V )
28 sneq 3969 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  b  ->  { k }  =  { b } )
2928difeq2d 3540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  b  ->  ( V  \  { k } )  =  ( V 
\  { b } ) )
30 preq2 4043 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  b  ->  { l ,  k }  =  { l ,  b } )
3130eleq1d 2533 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  b  ->  ( { l ,  k }  e.  ran  E  <->  { l ,  b }  e.  ran  E ) )
3229, 31raleqbidv 2987 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  b  ->  ( A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  <->  A. l  e.  ( V  \  { b } ) { l ,  b }  e.  ran  E ) )
3332rspcv 3132 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  V  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  A. l  e.  ( V  \  { b } ) { l ,  b }  e.  ran  E ) )
3427, 33syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  ->  A. l  e.  ( V  \  { b } ) { l ,  b }  e.  ran  E ) )
35 preq1 4042 . . . . . . . . . . . . . . . . . . . 20  |-  ( l  =  a  ->  { l ,  b }  =  { a ,  b } )
3635eleq1d 2533 . . . . . . . . . . . . . . . . . . 19  |-  ( l  =  a  ->  ( { l ,  b }  e.  ran  E  <->  { a ,  b }  e.  ran  E ) )
3736rspcv 3132 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( V  \  { b } )  ->  ( A. l  e.  ( V  \  {
b } ) { l ,  b }  e.  ran  E  ->  { a ,  b }  e.  ran  E
) )
3826, 34, 37sylsyld 57 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  ->  { a ,  b }  e.  ran  E
) )
39 eleq1 2537 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  { a ,  b }  ->  (
e  e.  ran  E  <->  { a ,  b }  e.  ran  E ) )
4039bicomd 206 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ran  E  <->  e  e.  ran  E ) )
4140adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  { a ,  b }  /\  ( a  e.  V  /\  b  e.  V
) )  ->  ( { a ,  b }  e.  ran  E  <->  e  e.  ran  E ) )
4241adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( { a ,  b }  e.  ran  E  <-> 
e  e.  ran  E
) )
4338, 42sylibd 222 . . . . . . . . . . . . . . . 16  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) )
4443exp31 615 . . . . . . . . . . . . . . 15  |-  ( e  =  { a ,  b }  ->  (
( a  e.  V  /\  b  e.  V
)  ->  ( a  =/=  b  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E
) ) ) )
4522, 44syl5bi 225 . . . . . . . . . . . . . 14  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ~P V  ->  ( a  =/=  b  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) ) )
4616, 45sylbid 223 . . . . . . . . . . . . 13  |-  ( e  =  { a ,  b }  ->  (
e  e.  ~P V  ->  ( a  =/=  b  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) ) )
4746com23 80 . . . . . . . . . . . 12  |-  ( e  =  { a ,  b }  ->  (
a  =/=  b  -> 
( e  e.  ~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) ) )
4847impcom 437 . . . . . . . . . . 11  |-  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  ( e  e. 
~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E ) ) )
4948exlimivv 1786 . . . . . . . . . 10  |-  ( E. a E. b ( a  =/=  b  /\  e  =  { a ,  b } )  ->  ( e  e. 
~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E ) ) )
5015, 49syl 17 . . . . . . . . 9  |-  ( (
# `  e )  =  2  ->  (
e  e.  ~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) )
5150impcom 437 . . . . . . . 8  |-  ( ( e  e.  ~P V  /\  ( # `  e
)  =  2 )  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) )
5212, 51sylbi 200 . . . . . . 7  |-  ( e  e.  { x  e. 
~P V  |  (
# `  x )  =  2 }  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E ) )
5352com12 31 . . . . . 6  |-  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  ( e  e.  {
x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  e  e.  ran  E ) )
5453adantl 473 . . . . 5  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ( e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  e  e.  ran  E ) )
559, 54impbid 195 . . . 4  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ( e  e. 
ran  E  <->  e  e.  {
x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
5655eqrdv 2469 . . 3  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
572, 56sylan 479 . 2  |-  ( ( V USGrph  E  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
581, 57syl 17 1  |-  ( V ComplUSGrph  E  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   A.wral 2756   {crab 2760   _Vcvv 3031    \ cdif 3387    C_ wss 3390   ~Pcpw 3942   {csn 3959   {cpr 3961   class class class wbr 4395   dom cdm 4839   ran crn 4840    Fn wfn 5584   -->wf 5585   -1-1->wf1 5586   ` cfv 5589   2c2 10681   #chash 12553   USGrph cusg 25136   ComplUSGrph ccusgra 25225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-hash 12554  df-usgra 25139  df-cusgra 25228
This theorem is referenced by:  cusgrafilem1  25286
  Copyright terms: Public domain W3C validator