MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrarn Structured version   Unicode version

Theorem cusgrarn 23318
Description: In a complete simple graph, the range of the edge function consists of all the pairs with different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Assertion
Ref Expression
cusgrarn  |-  ( V ComplUSGrph  E  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
Distinct variable groups:    x, E    x, V

Proof of Theorem cusgrarn
Dummy variables  a 
b  k  l  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscusgra0 23316 . 2  |-  ( V ComplUSGrph  E  ->  ( V USGrph  E  /\  A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E ) )
2 usgraf0 23227 . . 3  |-  ( V USGrph  E  ->  E : dom  E
-1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 } )
3 f1f 5601 . . . . . . 7  |-  ( E : dom  E -1-1-> {
x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  E : dom  E --> { x  e.  ~P V  |  ( # `  x
)  =  2 } )
4 df-f 5417 . . . . . . . 8  |-  ( E : dom  E --> { x  e.  ~P V  |  (
# `  x )  =  2 }  <->  ( E  Fn  dom  E  /\  ran  E 
C_  { x  e. 
~P V  |  (
# `  x )  =  2 } ) )
5 ssel 3345 . . . . . . . . 9  |-  ( ran 
E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 }  ->  ( e  e.  ran  E  ->  e  e.  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
65adantl 466 . . . . . . . 8  |-  ( ( E  Fn  dom  E  /\  ran  E  C_  { x  e.  ~P V  |  (
# `  x )  =  2 } )  ->  ( e  e. 
ran  E  ->  e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
74, 6sylbi 195 . . . . . . 7  |-  ( E : dom  E --> { x  e.  ~P V  |  (
# `  x )  =  2 }  ->  ( e  e.  ran  E  ->  e  e.  { x  e.  ~P V  |  (
# `  x )  =  2 } ) )
83, 7syl 16 . . . . . 6  |-  ( E : dom  E -1-1-> {
x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  ( e  e. 
ran  E  ->  e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
98adantr 465 . . . . 5  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ( e  e. 
ran  E  ->  e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
10 fveq2 5686 . . . . . . . . . 10  |-  ( x  =  e  ->  ( # `
 x )  =  ( # `  e
) )
1110eqeq1d 2446 . . . . . . . . 9  |-  ( x  =  e  ->  (
( # `  x )  =  2  <->  ( # `  e
)  =  2 ) )
1211elrab 3112 . . . . . . . 8  |-  ( e  e.  { x  e. 
~P V  |  (
# `  x )  =  2 }  <->  ( e  e.  ~P V  /\  ( # `
 e )  =  2 ) )
13 vex 2970 . . . . . . . . . . 11  |-  e  e. 
_V
14 hash2prde 12171 . . . . . . . . . . 11  |-  ( ( e  e.  _V  /\  ( # `  e )  =  2 )  ->  E. a E. b ( a  =/=  b  /\  e  =  { a ,  b } ) )
1513, 14mpan 670 . . . . . . . . . 10  |-  ( (
# `  e )  =  2  ->  E. a E. b ( a  =/=  b  /\  e  =  { a ,  b } ) )
16 eleq1 2498 . . . . . . . . . . . . . 14  |-  ( e  =  { a ,  b }  ->  (
e  e.  ~P V  <->  { a ,  b }  e.  ~P V ) )
17 prex 4529 . . . . . . . . . . . . . . . . 17  |-  { a ,  b }  e.  _V
1817elpw 3861 . . . . . . . . . . . . . . . 16  |-  ( { a ,  b }  e.  ~P V  <->  { a ,  b }  C_  V )
19 vex 2970 . . . . . . . . . . . . . . . . 17  |-  a  e. 
_V
20 vex 2970 . . . . . . . . . . . . . . . . 17  |-  b  e. 
_V
2119, 20prss 4022 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  V  /\  b  e.  V )  <->  { a ,  b } 
C_  V )
2218, 21bitr4i 252 . . . . . . . . . . . . . . 15  |-  ( { a ,  b }  e.  ~P V  <->  ( a  e.  V  /\  b  e.  V ) )
23 simprl 755 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  { a ,  b }  /\  ( a  e.  V  /\  b  e.  V
) )  ->  a  e.  V )
2423anim1i 568 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( a  e.  V  /\  a  =/=  b
) )
25 eldifsn 3995 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  ( V  \  { b } )  <-> 
( a  e.  V  /\  a  =/=  b
) )
2624, 25sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
a  e.  ( V 
\  { b } ) )
27 simplrr 760 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
b  e.  V )
28 sneq 3882 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  b  ->  { k }  =  { b } )
2928difeq2d 3469 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  b  ->  ( V  \  { k } )  =  ( V 
\  { b } ) )
30 preq2 3950 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  b  ->  { l ,  k }  =  { l ,  b } )
3130eleq1d 2504 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  b  ->  ( { l ,  k }  e.  ran  E  <->  { l ,  b }  e.  ran  E ) )
3229, 31raleqbidv 2926 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  b  ->  ( A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  <->  A. l  e.  ( V  \  { b } ) { l ,  b }  e.  ran  E ) )
3332rspcv 3064 . . . . . . . . . . . . . . . . . . 19  |-  ( b  e.  V  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  A. l  e.  ( V  \  { b } ) { l ,  b }  e.  ran  E ) )
3427, 33syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  ->  A. l  e.  ( V  \  { b } ) { l ,  b }  e.  ran  E ) )
35 preq1 3949 . . . . . . . . . . . . . . . . . . . 20  |-  ( l  =  a  ->  { l ,  b }  =  { a ,  b } )
3635eleq1d 2504 . . . . . . . . . . . . . . . . . . 19  |-  ( l  =  a  ->  ( { l ,  b }  e.  ran  E  <->  { a ,  b }  e.  ran  E ) )
3736rspcv 3064 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( V  \  { b } )  ->  ( A. l  e.  ( V  \  {
b } ) { l ,  b }  e.  ran  E  ->  { a ,  b }  e.  ran  E
) )
3826, 34, 37sylsyld 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  ->  { a ,  b }  e.  ran  E
) )
39 eleq1 2498 . . . . . . . . . . . . . . . . . . . 20  |-  ( e  =  { a ,  b }  ->  (
e  e.  ran  E  <->  { a ,  b }  e.  ran  E ) )
4039bicomd 201 . . . . . . . . . . . . . . . . . . 19  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ran  E  <->  e  e.  ran  E ) )
4140adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  { a ,  b }  /\  ( a  e.  V  /\  b  e.  V
) )  ->  ( { a ,  b }  e.  ran  E  <->  e  e.  ran  E ) )
4241adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( { a ,  b }  e.  ran  E  <-> 
e  e.  ran  E
) )
4338, 42sylibd 214 . . . . . . . . . . . . . . . 16  |-  ( ( ( e  =  {
a ,  b }  /\  ( a  e.  V  /\  b  e.  V ) )  /\  a  =/=  b )  -> 
( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) )
4443exp31 604 . . . . . . . . . . . . . . 15  |-  ( e  =  { a ,  b }  ->  (
( a  e.  V  /\  b  e.  V
)  ->  ( a  =/=  b  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E
) ) ) )
4522, 44syl5bi 217 . . . . . . . . . . . . . 14  |-  ( e  =  { a ,  b }  ->  ( { a ,  b }  e.  ~P V  ->  ( a  =/=  b  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) ) )
4616, 45sylbid 215 . . . . . . . . . . . . 13  |-  ( e  =  { a ,  b }  ->  (
e  e.  ~P V  ->  ( a  =/=  b  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) ) )
4746com23 78 . . . . . . . . . . . 12  |-  ( e  =  { a ,  b }  ->  (
a  =/=  b  -> 
( e  e.  ~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) ) )
4847impcom 430 . . . . . . . . . . 11  |-  ( ( a  =/=  b  /\  e  =  { a ,  b } )  ->  ( e  e. 
~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E ) ) )
4948exlimivv 1689 . . . . . . . . . 10  |-  ( E. a E. b ( a  =/=  b  /\  e  =  { a ,  b } )  ->  ( e  e. 
~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E ) ) )
5015, 49syl 16 . . . . . . . . 9  |-  ( (
# `  e )  =  2  ->  (
e  e.  ~P V  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) ) )
5150impcom 430 . . . . . . . 8  |-  ( ( e  e.  ~P V  /\  ( # `  e
)  =  2 )  ->  ( A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E  -> 
e  e.  ran  E
) )
5212, 51sylbi 195 . . . . . . 7  |-  ( e  e.  { x  e. 
~P V  |  (
# `  x )  =  2 }  ->  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  e  e.  ran  E ) )
5352com12 31 . . . . . 6  |-  ( A. k  e.  V  A. l  e.  ( V  \  { k } ) { l ,  k }  e.  ran  E  ->  ( e  e.  {
x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  e  e.  ran  E ) )
5453adantl 466 . . . . 5  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ( e  e. 
{ x  e.  ~P V  |  ( # `  x
)  =  2 }  ->  e  e.  ran  E ) )
559, 54impbid 191 . . . 4  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ( e  e. 
ran  E  <->  e  e.  {
x  e.  ~P V  |  ( # `  x
)  =  2 } ) )
5655eqrdv 2436 . . 3  |-  ( ( E : dom  E -1-1-> { x  e.  ~P V  |  ( # `  x
)  =  2 }  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
572, 56sylan 471 . 2  |-  ( ( V USGrph  E  /\  A. k  e.  V  A. l  e.  ( V  \  {
k } ) { l ,  k }  e.  ran  E )  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
581, 57syl 16 1  |-  ( V ComplUSGrph  E  ->  ran  E  =  { x  e.  ~P V  |  ( # `  x
)  =  2 } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   A.wral 2710   {crab 2714   _Vcvv 2967    \ cdif 3320    C_ wss 3323   ~Pcpw 3855   {csn 3872   {cpr 3874   class class class wbr 4287   dom cdm 4835   ran crn 4836    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   ` cfv 5413   2c2 10363   #chash 12095   USGrph cusg 23215   ComplUSGrph ccusgra 23281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-hash 12096  df-usgra 23217  df-cusgra 23284
This theorem is referenced by:  cusgrafilem1  23338
  Copyright terms: Public domain W3C validator