MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrares Unicode version

Theorem cusgrares 21434
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypothesis
Ref Expression
cusgrares.f  |-  F  =  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x
) } )
Assertion
Ref Expression
cusgrares  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) ComplUSGrph  F )
Distinct variable groups:    x, E    x, N
Allowed substitution hints:    F( x)    V( x)

Proof of Theorem cusgrares
Dummy variables  y 
k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusisusgra 21420 . . 3  |-  ( V ComplUSGrph  E  ->  V USGrph  E )
2 cusgrares.f . . . 4  |-  F  =  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x
) } )
32usgrares1 21377 . . 3  |-  ( ( V USGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) USGrph  F )
41, 3sylan 458 . 2  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) USGrph  F )
5 iscusgra0 21419 . . . 4  |-  ( V ComplUSGrph  E  ->  ( V USGrph  E  /\  A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E ) )
6 usgraf1o 21335 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( V USGrph  E  ->  E : dom  E -1-1-onto-> ran 
E )
7 f1ocnvdm 5977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( E : dom  E -1-1-onto-> ran  E  /\  { n ,  k }  e.  ran  E )  ->  ( `' E `  { n ,  k } )  e.  dom  E )
87adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( `' E `  { n ,  k } )  e.  dom  E )
9 elpri 3794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( N  e.  { n ,  k }  ->  ( N  =  n  \/  N  =  k )
)
10 vex 2919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  n  e. 
_V
1110snid 3801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  n  e. 
{ n }
12 sneq 3785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( N  =  n  ->  { N }  =  { n } )
1311, 12syl5eleqr 2491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  =  n  ->  n  e.  { N } )
14 notnot 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( n  e.  { N }  <->  -. 
-.  n  e.  { N } )
1513, 14sylib 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  =  n  ->  -.  -.  n  e.  { N } )
16 df-nel 2570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( n  e/  { N }  <->  -.  n  e.  { N } )
1715, 16sylnibr 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  =  n  ->  -.  n  e/  { N }
)
18 vex 2919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  |-  k  e. 
_V
1918snid 3801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  k  e. 
{ k }
20 sneq 3785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( N  =  k  ->  { N }  =  { k } )
2119, 20syl5eleqr 2491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  =  k  ->  k  e.  { N } )
22 notnot 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( k  e.  { N }  <->  -. 
-.  k  e.  { N } )
2321, 22sylib 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  =  k  ->  -.  -.  k  e.  { N } )
24 df-nel 2570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( k  e/  { N }  <->  -.  k  e.  { N } )
2523, 24sylnibr 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  =  k  ->  -.  k  e/  { N }
)
2617, 25orim12i 503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( N  =  n  \/  N  =  k )  ->  ( -.  n  e/  { N }  \/  -.  k  e/  { N } ) )
279, 26syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  { n ,  k }  ->  ( -.  n  e/  { N }  \/  -.  k  e/  { N } ) )
28 ianor 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  ( n  e/  { N }  /\  k  e/  { N } )  <-> 
( -.  n  e/  { N }  \/  -.  k  e/  { N }
) )
2927, 28sylibr 204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( N  e.  { n ,  k }  ->  -.  ( n  e/  { N }  /\  k  e/  { N } ) )
3029con2i 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  -.  N  e.  { n ,  k } )
31 df-nel 2570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( N  e/  { n ,  k }  <->  -.  N  e.  { n ,  k } )
3230, 31sylibr 204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  N  e/  { n ,  k } )
3332ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  N  e/  {
n ,  k } )
34 f1ocnvfv2 5974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( E : dom  E -1-1-onto-> ran  E  /\  { n ,  k }  e.  ran  E )  ->  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } )
3534adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } )
36 neleq2 2661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k }  ->  ( N  e/  ( E `
 ( `' E `  { n ,  k } ) )  <->  N  e/  { n ,  k } ) )
3735, 36syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( N  e/  ( E `  ( `' E `  { n ,  k } ) )  <->  N  e/  { n ,  k } ) )
3833, 37mpbird 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  N  e/  ( E `  ( `' E `  { n ,  k } ) ) )
39 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  ( `' E `  { n ,  k } )  ->  ( E `  x )  =  ( E `  ( `' E `  { n ,  k } ) ) )
40 neleq2 2661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( E `  x )  =  ( E `  ( `' E `  { n ,  k } ) )  ->  ( N  e/  ( E `  x
)  <->  N  e/  ( E `  ( `' E `  { n ,  k } ) ) ) )
4139, 40syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  ( `' E `  { n ,  k } )  ->  ( N  e/  ( E `  x )  <->  N  e/  ( E `  ( `' E `  { n ,  k } ) ) ) )
4241elrab 3052 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  <->  ( ( `' E `  { n ,  k } )  e.  dom  E  /\  N  e/  ( E `  ( `' E `  { n ,  k } ) ) ) )
438, 38, 42sylanbrc 646 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) } )
4443, 35jca 519 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) )
4544exp31 588 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  ( E : dom  E -1-1-onto-> ran  E  ->  ( { n ,  k }  e.  ran  E  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
4645com23 74 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  ( { n ,  k }  e.  ran  E  ->  ( E : dom  E -1-1-onto-> ran 
E  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
4746ex 424 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e/  { N }  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  -> 
( E : dom  E -1-1-onto-> ran 
E  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
4847com14 84 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E : dom  E -1-1-onto-> ran  E  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  -> 
( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
496, 48syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( V USGrph  E  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
5049ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
5150imp 419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  ->  ( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
5251adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  -> 
( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  (
( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
5352imp31 422 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) )
54 fveq2 5687 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' E `  { n ,  k } )  ->  ( E `  y )  =  ( E `  ( `' E `  { n ,  k } ) ) )
5554eqeq1d 2412 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' E `  { n ,  k } )  ->  (
( E `  y
)  =  { n ,  k }  <->  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) )
5655rspcev 3012 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } )  ->  E. y  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } )
5753, 56syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  E. y  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } )
58 usgrafun 21331 . . . . . . . . . . . . . . . . . . 19  |-  ( V USGrph  E  ->  Fun  E )
59 funfn 5441 . . . . . . . . . . . . . . . . . . 19  |-  ( Fun 
E  <->  E  Fn  dom  E )
6058, 59sylib 189 . . . . . . . . . . . . . . . . . 18  |-  ( V USGrph  E  ->  E  Fn  dom  E )
6160ad6antr 717 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  E  Fn  dom  E )
62 ssrab2 3388 . . . . . . . . . . . . . . . . 17  |-  { x  e.  dom  E  |  N  e/  ( E `  x
) }  C_  dom  E
63 fvelimab 5741 . . . . . . . . . . . . . . . . 17  |-  ( ( E  Fn  dom  E  /\  { x  e.  dom  E  |  N  e/  ( E `  x ) }  C_  dom  E )  ->  ( { n ,  k }  e.  ( E " { x  e.  dom  E  |  N  e/  ( E `  x
) } )  <->  E. y  e.  { x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } ) )
6461, 62, 63sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  ( { n ,  k }  e.  ( E " { x  e.  dom  E  |  N  e/  ( E `  x
) } )  <->  E. y  e.  { x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } ) )
6557, 64mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  { n ,  k }  e.  ( E " { x  e.  dom  E  |  N  e/  ( E `  x
) } ) )
662rneqi 5055 . . . . . . . . . . . . . . . 16  |-  ran  F  =  ran  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x ) } )
67 df-ima 4850 . . . . . . . . . . . . . . . 16  |-  ( E
" { x  e. 
dom  E  |  N  e/  ( E `  x
) } )  =  ran  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x ) } )
6866, 67eqtr4i 2427 . . . . . . . . . . . . . . 15  |-  ran  F  =  ( E " { x  e.  dom  E  |  N  e/  ( E `  x ) } )
6965, 68syl6eleqr 2495 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  { n ,  k }  e.  ran  F )
7069exp31 588 . . . . . . . . . . . . 13  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  -> 
( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  { n ,  k }  e.  ran  F ) ) )
7170ralimdva 2744 . . . . . . . . . . . 12  |-  ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  ->  ( A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E  ->  A. n  e.  ( V  \  { k } ) ( n  e/  { N }  ->  { n ,  k }  e.  ran  F ) ) )
7271imp 419 . . . . . . . . . . 11  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  A. n  e.  ( V  \  { k } ) ( n  e/  { N }  ->  { n ,  k }  e.  ran  F
) )
73 raldifb 3447 . . . . . . . . . . 11  |-  ( A. n  e.  ( V  \  { k } ) ( n  e/  { N }  ->  { n ,  k }  e.  ran  F )  <->  A. n  e.  ( ( V  \  { k } ) 
\  { N }
) { n ,  k }  e.  ran  F )
7472, 73sylib 189 . . . . . . . . . 10  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  A. n  e.  ( ( V  \  {
k } )  \  { N } ) { n ,  k }  e.  ran  F )
75 dif32 3564 . . . . . . . . . . 11  |-  ( ( V  \  { N } )  \  {
k } )  =  ( ( V  \  { k } ) 
\  { N }
)
7675raleqi 2868 . . . . . . . . . 10  |-  ( A. n  e.  ( ( V  \  { N }
)  \  { k } ) { n ,  k }  e.  ran  F  <->  A. n  e.  ( ( V  \  {
k } )  \  { N } ) { n ,  k }  e.  ran  F )
7774, 76sylibr 204 . . . . . . . . 9  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  A. n  e.  ( ( V  \  { N } )  \  {
k } ) { n ,  k }  e.  ran  F )
7877exp31 588 . . . . . . . 8  |-  ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  ->  ( k  e/  { N }  ->  ( A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E  ->  A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
7978com23 74 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  ->  ( A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E  ->  ( k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
8079ralimdva 2744 . . . . . 6  |-  ( ( V USGrph  E  /\  N  e.  V )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E  ->  A. k  e.  V  ( k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
8180impancom 428 . . . . 5  |-  ( ( V USGrph  E  /\  A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  ( N  e.  V  ->  A. k  e.  V  ( k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  {
k } ) { n ,  k }  e.  ran  F ) ) )
82 raldifb 3447 . . . . 5  |-  ( A. k  e.  V  (
k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  {
k } ) { n ,  k }  e.  ran  F )  <->  A. k  e.  ( V  \  { N }
) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
)
8381, 82syl6ib 218 . . . 4  |-  ( ( V USGrph  E  /\  A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  ( N  e.  V  ->  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) )
845, 83syl 16 . . 3  |-  ( V ComplUSGrph  E  ->  ( N  e.  V  ->  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) )
8584imp 419 . 2  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
)
86 usgrav 21324 . . . . 5  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
871, 86syl 16 . . . 4  |-  ( V ComplUSGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
88 difexg 4311 . . . . 5  |-  ( V  e.  _V  ->  ( V  \  { N }
)  e.  _V )
89 resexg 5144 . . . . . 6  |-  ( E  e.  _V  ->  ( E  |`  { x  e. 
dom  E  |  N  e/  ( E `  x
) } )  e. 
_V )
902, 89syl5eqel 2488 . . . . 5  |-  ( E  e.  _V  ->  F  e.  _V )
91 iscusgra 21418 . . . . 5  |-  ( ( ( V  \  { N } )  e.  _V  /\  F  e.  _V )  ->  ( ( V  \  { N } ) ComplUSGrph  F  <->  ( ( V  \  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
9288, 90, 91syl2an 464 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( V  \  { N } ) ComplUSGrph  F  <->  ( ( V  \  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
9387, 92syl 16 . . 3  |-  ( V ComplUSGrph  E  ->  ( ( V 
\  { N }
) ComplUSGrph  F  <->  ( ( V 
\  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
9493adantr 452 . 2  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  (
( V  \  { N } ) ComplUSGrph  F  <->  ( ( V  \  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
954, 85, 94mpbir2and 889 1  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) ComplUSGrph  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    e/ wnel 2568   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    \ cdif 3277    C_ wss 3280   {csn 3774   {cpr 3775   class class class wbr 4172   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840   Fun wfun 5407    Fn wfn 5408   -1-1-onto->wf1o 5412   ` cfv 5413   USGrph cusg 21318   ComplUSGrph ccusgra 21384
This theorem is referenced by:  cusgrasizeinds  21438  cusgrasize  21440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-hash 11574  df-usgra 21320  df-cusgra 21387
  Copyright terms: Public domain W3C validator