MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrares Structured version   Unicode version

Theorem cusgrares 23383
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypothesis
Ref Expression
cusgrares.f  |-  F  =  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x
) } )
Assertion
Ref Expression
cusgrares  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) ComplUSGrph  F )
Distinct variable groups:    x, E    x, N
Allowed substitution hints:    F( x)    V( x)

Proof of Theorem cusgrares
Dummy variables  y 
k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusisusgra 23369 . . 3  |-  ( V ComplUSGrph  E  ->  V USGrph  E )
2 cusgrares.f . . . 4  |-  F  =  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x
) } )
32usgrares1 23326 . . 3  |-  ( ( V USGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) USGrph  F )
41, 3sylan 471 . 2  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) USGrph  F )
5 iscusgra0 23368 . . . 4  |-  ( V ComplUSGrph  E  ->  ( V USGrph  E  /\  A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E ) )
6 usgraf1o 23284 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( V USGrph  E  ->  E : dom  E -1-1-onto-> ran 
E )
7 f1ocnvdm 5992 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( E : dom  E -1-1-onto-> ran  E  /\  { n ,  k }  e.  ran  E )  ->  ( `' E `  { n ,  k } )  e.  dom  E )
87adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( `' E `  { n ,  k } )  e.  dom  E )
9 elpri 3900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( N  e.  { n ,  k }  ->  ( N  =  n  \/  N  =  k )
)
10 ssnid 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  n  e. 
{ n }
11 sneq 3890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( N  =  n  ->  { N }  =  { n } )
1210, 11syl5eleqr 2530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  =  n  ->  n  e.  { N } )
13 notnot 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( n  e.  { N }  <->  -. 
-.  n  e.  { N } )
1412, 13sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  =  n  ->  -.  -.  n  e.  { N } )
15 df-nel 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( n  e/  { N }  <->  -.  n  e.  { N } )
1614, 15sylnibr 305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  =  n  ->  -.  n  e/  { N }
)
17 ssnid 3909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  k  e. 
{ k }
18 sneq 3890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( N  =  k  ->  { N }  =  { k } )
1917, 18syl5eleqr 2530 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( N  =  k  ->  k  e.  { N } )
20 notnot 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( k  e.  { N }  <->  -. 
-.  k  e.  { N } )
2119, 20sylib 196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( N  =  k  ->  -.  -.  k  e.  { N } )
22 df-nel 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( k  e/  { N }  <->  -.  k  e.  { N } )
2321, 22sylnibr 305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( N  =  k  ->  -.  k  e/  { N }
)
2416, 23orim12i 516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( N  =  n  \/  N  =  k )  ->  ( -.  n  e/  { N }  \/  -.  k  e/  { N } ) )
259, 24syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( N  e.  { n ,  k }  ->  ( -.  n  e/  { N }  \/  -.  k  e/  { N } ) )
26 ianor 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( -.  ( n  e/  { N }  /\  k  e/  { N } )  <-> 
( -.  n  e/  { N }  \/  -.  k  e/  { N }
) )
2725, 26sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( N  e.  { n ,  k }  ->  -.  ( n  e/  { N }  /\  k  e/  { N } ) )
2827con2i 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  -.  N  e.  { n ,  k } )
29 df-nel 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( N  e/  { n ,  k }  <->  -.  N  e.  { n ,  k } )
3028, 29sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  N  e/  { n ,  k } )
3130ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  N  e/  {
n ,  k } )
32 f1ocnvfv2 5987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( E : dom  E -1-1-onto-> ran  E  /\  { n ,  k }  e.  ran  E )  ->  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } )
3332adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } )
34 neleq2 2713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k }  ->  ( N  e/  ( E `
 ( `' E `  { n ,  k } ) )  <->  N  e/  { n ,  k } ) )
3533, 34syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( N  e/  ( E `  ( `' E `  { n ,  k } ) )  <->  N  e/  { n ,  k } ) )
3631, 35mpbird 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  N  e/  ( E `  ( `' E `  { n ,  k } ) ) )
37 fveq2 5694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  ( `' E `  { n ,  k } )  ->  ( E `  x )  =  ( E `  ( `' E `  { n ,  k } ) ) )
38 neleq2 2713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( E `  x )  =  ( E `  ( `' E `  { n ,  k } ) )  ->  ( N  e/  ( E `  x
)  <->  N  e/  ( E `  ( `' E `  { n ,  k } ) ) ) )
3937, 38syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  ( `' E `  { n ,  k } )  ->  ( N  e/  ( E `  x )  <->  N  e/  ( E `  ( `' E `  { n ,  k } ) ) ) )
4039elrab 3120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  <->  ( ( `' E `  { n ,  k } )  e.  dom  E  /\  N  e/  ( E `  ( `' E `  { n ,  k } ) ) ) )
418, 36, 40sylanbrc 664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) } )
4241, 33jca 532 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( n  e/  { N }  /\  k  e/  { N } )  /\  E : dom  E -1-1-onto-> ran 
E )  /\  {
n ,  k }  e.  ran  E )  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) )
4342exp31 604 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  ( E : dom  E -1-1-onto-> ran  E  ->  ( { n ,  k }  e.  ran  E  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
4443com23 78 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( n  e/  { N }  /\  k  e/  { N } )  ->  ( { n ,  k }  e.  ran  E  ->  ( E : dom  E -1-1-onto-> ran 
E  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
4544ex 434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  e/  { N }  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  -> 
( E : dom  E -1-1-onto-> ran 
E  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
4645com14 88 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E : dom  E -1-1-onto-> ran  E  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  -> 
( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
476, 46syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( V USGrph  E  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
4847ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  ->  ( k  e/  { N }  ->  ( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) ) )
4948imp 429 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  ->  ( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  ( ( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
5049adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  -> 
( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  (
( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) ) ) )
5150imp31 432 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  ( ( `' E `  { n ,  k } )  e.  { x  e. 
dom  E  |  N  e/  ( E `  x
) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) )
52 fveq2 5694 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' E `  { n ,  k } )  ->  ( E `  y )  =  ( E `  ( `' E `  { n ,  k } ) ) )
5352eqeq1d 2451 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' E `  { n ,  k } )  ->  (
( E `  y
)  =  { n ,  k }  <->  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } ) )
5453rspcev 3076 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' E `  { n ,  k } )  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  /\  ( E `  ( `' E `  { n ,  k } ) )  =  { n ,  k } )  ->  E. y  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } )
5551, 54syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  E. y  e.  {
x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } )
56 usgrafun 23280 . . . . . . . . . . . . . . . . . . 19  |-  ( V USGrph  E  ->  Fun  E )
57 funfn 5450 . . . . . . . . . . . . . . . . . . 19  |-  ( Fun 
E  <->  E  Fn  dom  E )
5856, 57sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( V USGrph  E  ->  E  Fn  dom  E )
5958ad6antr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  E  Fn  dom  E )
60 ssrab2 3440 . . . . . . . . . . . . . . . . 17  |-  { x  e.  dom  E  |  N  e/  ( E `  x
) }  C_  dom  E
61 fvelimab 5750 . . . . . . . . . . . . . . . . 17  |-  ( ( E  Fn  dom  E  /\  { x  e.  dom  E  |  N  e/  ( E `  x ) }  C_  dom  E )  ->  ( { n ,  k }  e.  ( E " { x  e.  dom  E  |  N  e/  ( E `  x
) } )  <->  E. y  e.  { x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } ) )
6259, 60, 61sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  ( { n ,  k }  e.  ( E " { x  e.  dom  E  |  N  e/  ( E `  x
) } )  <->  E. y  e.  { x  e.  dom  E  |  N  e/  ( E `  x ) }  ( E `  y )  =  {
n ,  k } ) )
6355, 62mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  { n ,  k }  e.  ( E " { x  e.  dom  E  |  N  e/  ( E `  x
) } ) )
642rneqi 5069 . . . . . . . . . . . . . . . 16  |-  ran  F  =  ran  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x ) } )
65 df-ima 4856 . . . . . . . . . . . . . . . 16  |-  ( E
" { x  e. 
dom  E  |  N  e/  ( E `  x
) } )  =  ran  ( E  |`  { x  e.  dom  E  |  N  e/  ( E `  x ) } )
6664, 65eqtr4i 2466 . . . . . . . . . . . . . . 15  |-  ran  F  =  ( E " { x  e.  dom  E  |  N  e/  ( E `  x ) } )
6763, 66syl6eleqr 2534 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  /\  { n ,  k }  e.  ran  E )  /\  n  e/  { N } )  ->  { n ,  k }  e.  ran  F )
6867exp31 604 . . . . . . . . . . . . 13  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  n  e.  ( V  \  { k } ) )  -> 
( { n ,  k }  e.  ran  E  ->  ( n  e/  { N }  ->  { n ,  k }  e.  ran  F ) ) )
6968ralimdva 2797 . . . . . . . . . . . 12  |-  ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  ->  ( A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E  ->  A. n  e.  ( V  \  { k } ) ( n  e/  { N }  ->  { n ,  k }  e.  ran  F ) ) )
7069imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  A. n  e.  ( V  \  { k } ) ( n  e/  { N }  ->  { n ,  k }  e.  ran  F
) )
71 raldifb 3499 . . . . . . . . . . 11  |-  ( A. n  e.  ( V  \  { k } ) ( n  e/  { N }  ->  { n ,  k }  e.  ran  F )  <->  A. n  e.  ( ( V  \  { k } ) 
\  { N }
) { n ,  k }  e.  ran  F )
7270, 71sylib 196 . . . . . . . . . 10  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  A. n  e.  ( ( V  \  {
k } )  \  { N } ) { n ,  k }  e.  ran  F )
73 dif32 3616 . . . . . . . . . . 11  |-  ( ( V  \  { N } )  \  {
k } )  =  ( ( V  \  { k } ) 
\  { N }
)
7473raleqi 2924 . . . . . . . . . 10  |-  ( A. n  e.  ( ( V  \  { N }
)  \  { k } ) { n ,  k }  e.  ran  F  <->  A. n  e.  ( ( V  \  {
k } )  \  { N } ) { n ,  k }  e.  ran  F )
7572, 74sylibr 212 . . . . . . . . 9  |-  ( ( ( ( ( V USGrph  E  /\  N  e.  V
)  /\  k  e.  V )  /\  k  e/  { N } )  /\  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  A. n  e.  ( ( V  \  { N } )  \  {
k } ) { n ,  k }  e.  ran  F )
7675exp31 604 . . . . . . . 8  |-  ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  ->  ( k  e/  { N }  ->  ( A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E  ->  A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
7776com23 78 . . . . . . 7  |-  ( ( ( V USGrph  E  /\  N  e.  V )  /\  k  e.  V
)  ->  ( A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E  ->  ( k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
7877ralimdva 2797 . . . . . 6  |-  ( ( V USGrph  E  /\  N  e.  V )  ->  ( A. k  e.  V  A. n  e.  ( V  \  { k } ) { n ,  k }  e.  ran  E  ->  A. k  e.  V  ( k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
7978impancom 440 . . . . 5  |-  ( ( V USGrph  E  /\  A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  ( N  e.  V  ->  A. k  e.  V  ( k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  {
k } ) { n ,  k }  e.  ran  F ) ) )
80 raldifb 3499 . . . . 5  |-  ( A. k  e.  V  (
k  e/  { N }  ->  A. n  e.  ( ( V  \  { N } )  \  {
k } ) { n ,  k }  e.  ran  F )  <->  A. k  e.  ( V  \  { N }
) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
)
8179, 80syl6ib 226 . . . 4  |-  ( ( V USGrph  E  /\  A. k  e.  V  A. n  e.  ( V  \  {
k } ) { n ,  k }  e.  ran  E )  ->  ( N  e.  V  ->  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) )
825, 81syl 16 . . 3  |-  ( V ComplUSGrph  E  ->  ( N  e.  V  ->  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) )
8382imp 429 . 2  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
)
84 usgrav 23273 . . . . 5  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
851, 84syl 16 . . . 4  |-  ( V ComplUSGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
86 difexg 4443 . . . . 5  |-  ( V  e.  _V  ->  ( V  \  { N }
)  e.  _V )
87 resexg 5152 . . . . . 6  |-  ( E  e.  _V  ->  ( E  |`  { x  e. 
dom  E  |  N  e/  ( E `  x
) } )  e. 
_V )
882, 87syl5eqel 2527 . . . . 5  |-  ( E  e.  _V  ->  F  e.  _V )
89 iscusgra 23367 . . . . 5  |-  ( ( ( V  \  { N } )  e.  _V  /\  F  e.  _V )  ->  ( ( V  \  { N } ) ComplUSGrph  F  <->  ( ( V  \  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
9086, 88, 89syl2an 477 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( V  \  { N } ) ComplUSGrph  F  <->  ( ( V  \  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
9185, 90syl 16 . . 3  |-  ( V ComplUSGrph  E  ->  ( ( V 
\  { N }
) ComplUSGrph  F  <->  ( ( V 
\  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
9291adantr 465 . 2  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  (
( V  \  { N } ) ComplUSGrph  F  <->  ( ( V  \  { N }
) USGrph  F  /\  A. k  e.  ( V  \  { N } ) A. n  e.  ( ( V  \  { N } )  \  { k } ) { n ,  k }  e.  ran  F
) ) )
934, 83, 92mpbir2and 913 1  |-  ( ( V ComplUSGrph  E  /\  N  e.  V )  ->  ( V  \  { N }
) ComplUSGrph  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    e/ wnel 2610   A.wral 2718   E.wrex 2719   {crab 2722   _Vcvv 2975    \ cdif 3328    C_ wss 3331   {csn 3880   {cpr 3882   class class class wbr 4295   `'ccnv 4842   dom cdm 4843   ran crn 4844    |` cres 4845   "cima 4846   Fun wfun 5415    Fn wfn 5416   -1-1-onto->wf1o 5420   ` cfv 5421   USGrph cusg 23267   ComplUSGrph ccusgra 23333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-er 7104  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-card 8112  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-nn 10326  df-2 10383  df-n0 10583  df-z 10650  df-uz 10865  df-fz 11441  df-hash 12107  df-usgra 23269  df-cusgra 23336
This theorem is referenced by:  cusgrasizeinds  23387  cusgrasize  23389
  Copyright terms: Public domain W3C validator