MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrafilem2 Structured version   Visualization version   Unicode version

Theorem cusgrafilem2 25287
Description: Lemma 2 for cusgrafi 25289. (Contributed by Alexander van der Vekens, 13-Jan-2018.)
Hypotheses
Ref Expression
cusgrafi.p  |-  P  =  { x  e.  ~P V  |  E. a  e.  V  ( a  =/=  N  /\  x  =  { a ,  N } ) }
cusgrafi.f  |-  F  =  ( x  e.  ( V  \  { N } )  |->  { x ,  N } )
Assertion
Ref Expression
cusgrafilem2  |-  ( ( V  e.  W  /\  N  e.  V )  ->  F : ( V 
\  { N }
)
-1-1-onto-> P )
Distinct variable groups:    N, a, x    V, a, x    x, P    W, a, x
Allowed substitution hints:    P( a)    F( x, a)

Proof of Theorem cusgrafilem2
Dummy variables  e 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4088 . . . . . . 7  |-  ( v  e.  ( V  \  { N } )  <->  ( v  e.  V  /\  v  =/=  N ) )
2 simpl 464 . . . . . . 7  |-  ( ( v  e.  V  /\  v  =/=  N )  -> 
v  e.  V )
31, 2sylbi 200 . . . . . 6  |-  ( v  e.  ( V  \  { N } )  -> 
v  e.  V )
4 simpr 468 . . . . . 6  |-  ( ( V  e.  W  /\  N  e.  V )  ->  N  e.  V )
5 prelpwi 4647 . . . . . 6  |-  ( ( v  e.  V  /\  N  e.  V )  ->  { v ,  N }  e.  ~P V
)
63, 4, 5syl2anr 486 . . . . 5  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  ->  { v ,  N }  e.  ~P V
)
71biimpi 199 . . . . . . 7  |-  ( v  e.  ( V  \  { N } )  -> 
( v  e.  V  /\  v  =/=  N
) )
87adantl 473 . . . . . 6  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  -> 
( v  e.  V  /\  v  =/=  N
) )
9 simpr 468 . . . . . . . . 9  |-  ( ( v  e.  V  /\  v  =/=  N )  -> 
v  =/=  N )
101, 9sylbi 200 . . . . . . . 8  |-  ( v  e.  ( V  \  { N } )  -> 
v  =/=  N )
1110adantl 473 . . . . . . 7  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  -> 
v  =/=  N )
12 eqidd 2472 . . . . . . 7  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  ->  { v ,  N }  =  { v ,  N } )
1311, 12jca 541 . . . . . 6  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  -> 
( v  =/=  N  /\  { v ,  N }  =  { v ,  N } ) )
14 neeq1 2705 . . . . . . . . 9  |-  ( a  =  v  ->  (
a  =/=  N  <->  v  =/=  N ) )
15 preq1 4042 . . . . . . . . . 10  |-  ( a  =  v  ->  { a ,  N }  =  { v ,  N } )
1615eqeq2d 2481 . . . . . . . . 9  |-  ( a  =  v  ->  ( { v ,  N }  =  { a ,  N }  <->  { v ,  N }  =  {
v ,  N }
) )
1714, 16anbi12d 725 . . . . . . . 8  |-  ( a  =  v  ->  (
( a  =/=  N  /\  { v ,  N }  =  { a ,  N } )  <->  ( v  =/=  N  /\  { v ,  N }  =  { v ,  N } ) ) )
1817adantl 473 . . . . . . 7  |-  ( ( ( v  e.  V  /\  v  =/=  N
)  /\  a  =  v )  ->  (
( a  =/=  N  /\  { v ,  N }  =  { a ,  N } )  <->  ( v  =/=  N  /\  { v ,  N }  =  { v ,  N } ) ) )
192, 18rspcedv 3140 . . . . . 6  |-  ( ( v  e.  V  /\  v  =/=  N )  -> 
( ( v  =/= 
N  /\  { v ,  N }  =  {
v ,  N }
)  ->  E. a  e.  V  ( a  =/=  N  /\  { v ,  N }  =  { a ,  N } ) ) )
208, 13, 19sylc 61 . . . . 5  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  ->  E. a  e.  V  ( a  =/=  N  /\  { v ,  N }  =  { a ,  N } ) )
21 eqeq1 2475 . . . . . . . 8  |-  ( x  =  { v ,  N }  ->  (
x  =  { a ,  N }  <->  { v ,  N }  =  {
a ,  N }
) )
2221anbi2d 718 . . . . . . 7  |-  ( x  =  { v ,  N }  ->  (
( a  =/=  N  /\  x  =  {
a ,  N }
)  <->  ( a  =/= 
N  /\  { v ,  N }  =  {
a ,  N }
) ) )
2322rexbidv 2892 . . . . . 6  |-  ( x  =  { v ,  N }  ->  ( E. a  e.  V  ( a  =/=  N  /\  x  =  {
a ,  N }
)  <->  E. a  e.  V  ( a  =/=  N  /\  { v ,  N }  =  { a ,  N } ) ) )
24 cusgrafi.p . . . . . 6  |-  P  =  { x  e.  ~P V  |  E. a  e.  V  ( a  =/=  N  /\  x  =  { a ,  N } ) }
2523, 24elrab2 3186 . . . . 5  |-  ( { v ,  N }  e.  P  <->  ( { v ,  N }  e.  ~P V  /\  E. a  e.  V  ( a  =/=  N  /\  { v ,  N }  =  { a ,  N } ) ) )
266, 20, 25sylanbrc 677 . . . 4  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  v  e.  ( V  \  { N } ) )  ->  { v ,  N }  e.  P )
2726ralrimiva 2809 . . 3  |-  ( ( V  e.  W  /\  N  e.  V )  ->  A. v  e.  ( V  \  { N } ) { v ,  N }  e.  P )
28 preq1 4042 . . . . 5  |-  ( x  =  v  ->  { x ,  N }  =  {
v ,  N }
)
2928eleq1d 2533 . . . 4  |-  ( x  =  v  ->  ( { x ,  N }  e.  P  <->  { v ,  N }  e.  P
) )
3029cbvralv 3005 . . 3  |-  ( A. x  e.  ( V  \  { N } ) { x ,  N }  e.  P  <->  A. v  e.  ( V  \  { N } ) { v ,  N }  e.  P )
3127, 30sylibr 217 . 2  |-  ( ( V  e.  W  /\  N  e.  V )  ->  A. x  e.  ( V  \  { N } ) { x ,  N }  e.  P
)
32 simpl 464 . . . . . . . . . . 11  |-  ( ( a  =/=  N  /\  e  =  { a ,  N } )  -> 
a  =/=  N )
3332anim2i 579 . . . . . . . . . 10  |-  ( ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) )  ->  (
a  e.  V  /\  a  =/=  N ) )
3433adantl 473 . . . . . . . . 9  |-  ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  -> 
( a  e.  V  /\  a  =/=  N
) )
35 eldifsn 4088 . . . . . . . . 9  |-  ( a  e.  ( V  \  { N } )  <->  ( a  e.  V  /\  a  =/=  N ) )
3634, 35sylibr 217 . . . . . . . 8  |-  ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  -> 
a  e.  ( V 
\  { N }
) )
37 eqeq1 2475 . . . . . . . . . . . . . 14  |-  ( e  =  { a ,  N }  ->  (
e  =  { x ,  N }  <->  { a ,  N }  =  {
x ,  N }
) )
3837adantl 473 . . . . . . . . . . . . 13  |-  ( ( a  =/=  N  /\  e  =  { a ,  N } )  -> 
( e  =  {
x ,  N }  <->  { a ,  N }  =  { x ,  N } ) )
3938ad2antlr 741 . . . . . . . . . . . 12  |-  ( ( ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) )  /\  x  e.  ( V  \  { N } ) )  -> 
( e  =  {
x ,  N }  <->  { a ,  N }  =  { x ,  N } ) )
40 vex 3034 . . . . . . . . . . . . . 14  |-  a  e. 
_V
41 vex 3034 . . . . . . . . . . . . . 14  |-  x  e. 
_V
4240, 41preqr1 4139 . . . . . . . . . . . . 13  |-  ( { a ,  N }  =  { x ,  N }  ->  a  =  x )
4342eqcomd 2477 . . . . . . . . . . . 12  |-  ( { a ,  N }  =  { x ,  N }  ->  x  =  a )
4439, 43syl6bi 236 . . . . . . . . . . 11  |-  ( ( ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) )  /\  x  e.  ( V  \  { N } ) )  -> 
( e  =  {
x ,  N }  ->  x  =  a ) )
4544adantll 728 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  /\  x  e.  ( V  \  { N } ) )  ->  ( e  =  { x ,  N }  ->  x  =  a ) )
46 preq1 4042 . . . . . . . . . . . . . . . 16  |-  ( a  =  x  ->  { a ,  N }  =  { x ,  N } )
4746equcoms 1872 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  { a ,  N }  =  { x ,  N } )
4847eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  (
e  =  { a ,  N }  <->  e  =  { x ,  N } ) )
4948biimpcd 232 . . . . . . . . . . . . 13  |-  ( e  =  { a ,  N }  ->  (
x  =  a  -> 
e  =  { x ,  N } ) )
5049adantl 473 . . . . . . . . . . . 12  |-  ( ( a  =/=  N  /\  e  =  { a ,  N } )  -> 
( x  =  a  ->  e  =  {
x ,  N }
) )
5150adantl 473 . . . . . . . . . . 11  |-  ( ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) )  ->  (
x  =  a  -> 
e  =  { x ,  N } ) )
5251ad2antlr 741 . . . . . . . . . 10  |-  ( ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  /\  x  e.  ( V  \  { N } ) )  ->  ( x  =  a  ->  e  =  { x ,  N } ) )
5345, 52impbid 195 . . . . . . . . 9  |-  ( ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  /\  x  e.  ( V  \  { N } ) )  ->  ( e  =  { x ,  N } 
<->  x  =  a ) )
5453ralrimiva 2809 . . . . . . . 8  |-  ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  ->  A. x  e.  ( V  \  { N }
) ( e  =  { x ,  N } 
<->  x  =  a ) )
5536, 54jca 541 . . . . . . 7  |-  ( ( ( ( V  e.  W  /\  N  e.  V )  /\  e  e.  ~P V )  /\  ( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )  -> 
( a  e.  ( V  \  { N } )  /\  A. x  e.  ( V  \  { N } ) ( e  =  {
x ,  N }  <->  x  =  a ) ) )
5655ex 441 . . . . . 6  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  e  e.  ~P V )  ->  (
( a  e.  V  /\  ( a  =/=  N  /\  e  =  {
a ,  N }
) )  ->  (
a  e.  ( V 
\  { N }
)  /\  A. x  e.  ( V  \  { N } ) ( e  =  { x ,  N }  <->  x  =  a ) ) ) )
5756reximdv2 2855 . . . . 5  |-  ( ( ( V  e.  W  /\  N  e.  V
)  /\  e  e.  ~P V )  ->  ( E. a  e.  V  ( a  =/=  N  /\  e  =  {
a ,  N }
)  ->  E. a  e.  ( V  \  { N } ) A. x  e.  ( V  \  { N } ) ( e  =  { x ,  N }  <->  x  =  a ) ) )
5857expimpd 614 . . . 4  |-  ( ( V  e.  W  /\  N  e.  V )  ->  ( ( e  e. 
~P V  /\  E. a  e.  V  (
a  =/=  N  /\  e  =  { a ,  N } ) )  ->  E. a  e.  ( V  \  { N } ) A. x  e.  ( V  \  { N } ) ( e  =  { x ,  N }  <->  x  =  a ) ) )
59 eqeq1 2475 . . . . . . 7  |-  ( x  =  e  ->  (
x  =  { a ,  N }  <->  e  =  { a ,  N } ) )
6059anbi2d 718 . . . . . 6  |-  ( x  =  e  ->  (
( a  =/=  N  /\  x  =  {
a ,  N }
)  <->  ( a  =/= 
N  /\  e  =  { a ,  N } ) ) )
6160rexbidv 2892 . . . . 5  |-  ( x  =  e  ->  ( E. a  e.  V  ( a  =/=  N  /\  x  =  {
a ,  N }
)  <->  E. a  e.  V  ( a  =/=  N  /\  e  =  {
a ,  N }
) ) )
6261, 24elrab2 3186 . . . 4  |-  ( e  e.  P  <->  ( e  e.  ~P V  /\  E. a  e.  V  (
a  =/=  N  /\  e  =  { a ,  N } ) ) )
63 reu6 3215 . . . 4  |-  ( E! x  e.  ( V 
\  { N }
) e  =  {
x ,  N }  <->  E. a  e.  ( V 
\  { N }
) A. x  e.  ( V  \  { N } ) ( e  =  { x ,  N }  <->  x  =  a ) )
6458, 62, 633imtr4g 278 . . 3  |-  ( ( V  e.  W  /\  N  e.  V )  ->  ( e  e.  P  ->  E! x  e.  ( V  \  { N } ) e  =  { x ,  N } ) )
6564ralrimiv 2808 . 2  |-  ( ( V  e.  W  /\  N  e.  V )  ->  A. e  e.  P  E! x  e.  ( V  \  { N }
) e  =  {
x ,  N }
)
66 cusgrafi.f . . 3  |-  F  =  ( x  e.  ( V  \  { N } )  |->  { x ,  N } )
6766f1ompt 6059 . 2  |-  ( F : ( V  \  { N } ) -1-1-onto-> P  <->  ( A. x  e.  ( V  \  { N } ) { x ,  N }  e.  P  /\  A. e  e.  P  E! x  e.  ( V  \  { N } ) e  =  { x ,  N } ) )
6831, 65, 67sylanbrc 677 1  |-  ( ( V  e.  W  /\  N  e.  V )  ->  F : ( V 
\  { N }
)
-1-1-onto-> P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   E!wreu 2758   {crab 2760    \ cdif 3387   ~Pcpw 3942   {csn 3959   {cpr 3961    |-> cmpt 4454   -1-1-onto->wf1o 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597
This theorem is referenced by:  cusgrafilem3  25288
  Copyright terms: Public domain W3C validator