MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgraexi Structured version   Unicode version

Theorem cusgraexi 24130
Description: For each set the identity function restricted to the set of pairs of elements from the given set is an edge function, so that the given set together with this edge function is a complete graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Hypothesis
Ref Expression
cusgraexi.p  |-  P  =  { x  e.  ~P V  |  ( # `  x
)  =  2 }
Assertion
Ref Expression
cusgraexi  |-  ( V  e.  W  ->  V ComplUSGrph  (  _I  |`  P )
)
Distinct variable groups:    x, V    x, P    x, W

Proof of Theorem cusgraexi
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgraexi.p . . 3  |-  P  =  { x  e.  ~P V  |  ( # `  x
)  =  2 }
21cusgraexilem1 24128 . 2  |-  ( V  e.  W  ->  (  _I  |`  P )  e. 
_V )
31cusgraexilem2 24129 . . . 4  |-  ( V  e.  W  ->  V USGrph  (  _I  |`  P )
)
43adantr 465 . . 3  |-  ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  ->  V USGrph  (  _I  |`  P ) )
5 eldifi 3619 . . . . . . 7  |-  ( b  e.  ( V  \  { a } )  ->  b  e.  V
)
6 simpr 461 . . . . . . 7  |-  ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V )  ->  a  e.  V )
7 prelpwi 4687 . . . . . . 7  |-  ( ( b  e.  V  /\  a  e.  V )  ->  { b ,  a }  e.  ~P V
)
85, 6, 7syl2anr 478 . . . . . 6  |-  ( ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  ->  { b ,  a }  e.  ~P V
)
9 eldifsni 4146 . . . . . . . 8  |-  ( b  e.  ( V  \  { a } )  ->  b  =/=  a
)
109adantl 466 . . . . . . 7  |-  ( ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  -> 
b  =/=  a )
11 hashprg 12415 . . . . . . . 8  |-  ( ( b  e.  V  /\  a  e.  V )  ->  ( b  =/=  a  <->  (
# `  { b ,  a } )  =  2 ) )
125, 6, 11syl2anr 478 . . . . . . 7  |-  ( ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  -> 
( b  =/=  a  <->  (
# `  { b ,  a } )  =  2 ) )
1310, 12mpbid 210 . . . . . 6  |-  ( ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  -> 
( # `  { b ,  a } )  =  2 )
14 fveq2 5857 . . . . . . . 8  |-  ( x  =  { b ,  a }  ->  ( # `
 x )  =  ( # `  {
b ,  a } ) )
1514eqeq1d 2462 . . . . . . 7  |-  ( x  =  { b ,  a }  ->  (
( # `  x )  =  2  <->  ( # `  {
b ,  a } )  =  2 ) )
16 rnresi 5341 . . . . . . . 8  |-  ran  (  _I  |`  P )  =  P
1716, 1eqtri 2489 . . . . . . 7  |-  ran  (  _I  |`  P )  =  { x  e.  ~P V  |  ( # `  x
)  =  2 }
1815, 17elrab2 3256 . . . . . 6  |-  ( { b ,  a }  e.  ran  (  _I  |`  P )  <->  ( {
b ,  a }  e.  ~P V  /\  ( # `  { b ,  a } )  =  2 ) )
198, 13, 18sylanbrc 664 . . . . 5  |-  ( ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V
)  /\  b  e.  ( V  \  { a } ) )  ->  { b ,  a }  e.  ran  (  _I  |`  P ) )
2019ralrimiva 2871 . . . 4  |-  ( ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  /\  a  e.  V )  ->  A. b  e.  ( V  \  { a } ) { b ,  a }  e.  ran  (  _I  |`  P ) )
2120ralrimiva 2871 . . 3  |-  ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  ->  A. a  e.  V  A. b  e.  ( V  \  { a } ) { b ,  a }  e.  ran  (  _I  |`  P ) )
22 iscusgra 24118 . . 3  |-  ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  -> 
( V ComplUSGrph  (  _I  |`  P )  <-> 
( V USGrph  (  _I  |`  P )  /\  A. a  e.  V  A. b  e.  ( V  \  { a } ) { b ,  a }  e.  ran  (  _I  |`  P ) ) ) )
234, 21, 22mpbir2and 915 . 2  |-  ( ( V  e.  W  /\  (  _I  |`  P )  e.  _V )  ->  V ComplUSGrph  (  _I  |`  P ) )
242, 23mpdan 668 1  |-  ( V  e.  W  ->  V ComplUSGrph  (  _I  |`  P )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   {crab 2811   _Vcvv 3106    \ cdif 3466   ~Pcpw 4003   {csn 4020   {cpr 4022   class class class wbr 4440    _I cid 4783   ran crn 4993    |` cres 4994   ` cfv 5579   2c2 10574   #chash 12360   USGrph cusg 23993   ComplUSGrph ccusgra 24080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-hash 12361  df-usgra 23996  df-cusgra 24083
This theorem is referenced by:  cusgraexg  24131
  Copyright terms: Public domain W3C validator