MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2 Structured version   Unicode version

Theorem curry2 6776
Description: Composition with  `' ( 1st  |`  ( _V  X.  { C } ) ) turns any binary operation  F with a constant second operand into a function  G of the first operand only. This transformation is called "currying." (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1  |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )
Assertion
Ref Expression
curry2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( x F C ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, G

Proof of Theorem curry2
StepHypRef Expression
1 fnfun 5615 . . . . 5  |-  ( F  Fn  ( A  X.  B )  ->  Fun  F )
2 1stconst 6770 . . . . . 6  |-  ( C  e.  B  ->  ( 1st  |`  ( _V  X.  { C } ) ) : ( _V  X.  { C } ) -1-1-onto-> _V )
3 dff1o3 5754 . . . . . . 7  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) : ( _V 
X.  { C }
)
-1-1-onto-> _V 
<->  ( ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -onto-> _V  /\  Fun  `' ( 1st  |`  ( _V  X.  { C }
) ) ) )
43simprbi 464 . . . . . 6  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) : ( _V 
X.  { C }
)
-1-1-onto-> _V  ->  Fun  `' ( 1st  |`  ( _V  X.  { C } ) ) )
52, 4syl 16 . . . . 5  |-  ( C  e.  B  ->  Fun  `' ( 1st  |`  ( _V  X.  { C }
) ) )
6 funco 5563 . . . . 5  |-  ( ( Fun  F  /\  Fun  `' ( 1st  |`  ( _V  X.  { C }
) ) )  ->  Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) ) )
71, 5, 6syl2an 477 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) ) )
8 dmco 5453 . . . . 5  |-  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  =  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " dom  F )
9 fndm 5617 . . . . . . . 8  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
109adantr 465 . . . . . . 7  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  dom  F  =  ( A  X.  B ) )
1110imaeq2d 5276 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( `' `' ( 1st  |`  ( _V  X.  { C } ) ) " dom  F
)  =  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) ) )
12 imacnvcnv 5410 . . . . . . . . 9  |-  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) )  =  ( ( 1st  |`  ( _V  X.  { C } ) ) "
( A  X.  B
) )
13 df-ima 4960 . . . . . . . . 9  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) " ( A  X.  B ) )  =  ran  ( ( 1st  |`  ( _V  X.  { C } ) )  |`  ( A  X.  B ) )
14 resres 5230 . . . . . . . . . 10  |-  ( ( 1st  |`  ( _V  X.  { C } ) )  |`  ( A  X.  B ) )  =  ( 1st  |`  (
( _V  X.  { C } )  i^i  ( A  X.  B ) ) )
1514rneqi 5173 . . . . . . . . 9  |-  ran  (
( 1st  |`  ( _V 
X.  { C }
) )  |`  ( A  X.  B ) )  =  ran  ( 1st  |`  ( ( _V  X.  { C } )  i^i  ( A  X.  B
) ) )
1612, 13, 153eqtri 2487 . . . . . . . 8  |-  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) )  =  ran  ( 1st  |`  ( ( _V  X.  { C } )  i^i  ( A  X.  B
) ) )
17 inxp 5079 . . . . . . . . . . . . 13  |-  ( ( _V  X.  { C } )  i^i  ( A  X.  B ) )  =  ( ( _V 
i^i  A )  X.  ( { C }  i^i  B ) )
18 incom 3650 . . . . . . . . . . . . . . 15  |-  ( _V 
i^i  A )  =  ( A  i^i  _V )
19 inv1 3771 . . . . . . . . . . . . . . 15  |-  ( A  i^i  _V )  =  A
2018, 19eqtri 2483 . . . . . . . . . . . . . 14  |-  ( _V 
i^i  A )  =  A
2120xpeq1i 4967 . . . . . . . . . . . . 13  |-  ( ( _V  i^i  A )  X.  ( { C }  i^i  B ) )  =  ( A  X.  ( { C }  i^i  B ) )
2217, 21eqtri 2483 . . . . . . . . . . . 12  |-  ( ( _V  X.  { C } )  i^i  ( A  X.  B ) )  =  ( A  X.  ( { C }  i^i  B ) )
23 snssi 4124 . . . . . . . . . . . . . 14  |-  ( C  e.  B  ->  { C }  C_  B )
24 df-ss 3449 . . . . . . . . . . . . . 14  |-  ( { C }  C_  B  <->  ( { C }  i^i  B )  =  { C } )
2523, 24sylib 196 . . . . . . . . . . . . 13  |-  ( C  e.  B  ->  ( { C }  i^i  B
)  =  { C } )
2625xpeq2d 4971 . . . . . . . . . . . 12  |-  ( C  e.  B  ->  ( A  X.  ( { C }  i^i  B ) )  =  ( A  X.  { C } ) )
2722, 26syl5eq 2507 . . . . . . . . . . 11  |-  ( C  e.  B  ->  (
( _V  X.  { C } )  i^i  ( A  X.  B ) )  =  ( A  X.  { C } ) )
2827reseq2d 5217 . . . . . . . . . 10  |-  ( C  e.  B  ->  ( 1st  |`  ( ( _V 
X.  { C }
)  i^i  ( A  X.  B ) ) )  =  ( 1st  |`  ( A  X.  { C }
) ) )
2928rneqd 5174 . . . . . . . . 9  |-  ( C  e.  B  ->  ran  ( 1st  |`  ( ( _V  X.  { C }
)  i^i  ( A  X.  B ) ) )  =  ran  ( 1st  |`  ( A  X.  { C } ) ) )
30 1stconst 6770 . . . . . . . . . 10  |-  ( C  e.  B  ->  ( 1st  |`  ( A  X.  { C } ) ) : ( A  X.  { C } ) -1-1-onto-> A )
31 f1ofo 5755 . . . . . . . . . 10  |-  ( ( 1st  |`  ( A  X.  { C } ) ) : ( A  X.  { C }
)
-1-1-onto-> A  ->  ( 1st  |`  ( A  X.  { C }
) ) : ( A  X.  { C } ) -onto-> A )
32 forn 5730 . . . . . . . . . 10  |-  ( ( 1st  |`  ( A  X.  { C } ) ) : ( A  X.  { C }
) -onto-> A  ->  ran  ( 1st  |`  ( A  X.  { C } ) )  =  A )
3330, 31, 323syl 20 . . . . . . . . 9  |-  ( C  e.  B  ->  ran  ( 1st  |`  ( A  X.  { C } ) )  =  A )
3429, 33eqtrd 2495 . . . . . . . 8  |-  ( C  e.  B  ->  ran  ( 1st  |`  ( ( _V  X.  { C }
)  i^i  ( A  X.  B ) ) )  =  A )
3516, 34syl5eq 2507 . . . . . . 7  |-  ( C  e.  B  ->  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) )  =  A )
3635adantl 466 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( `' `' ( 1st  |`  ( _V  X.  { C } ) ) " ( A  X.  B ) )  =  A )
3711, 36eqtrd 2495 . . . . 5  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( `' `' ( 1st  |`  ( _V  X.  { C } ) ) " dom  F
)  =  A )
388, 37syl5eq 2507 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) )  =  A )
39 curry2.1 . . . . . 6  |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )
4039fneq1i 5612 . . . . 5  |-  ( G  Fn  A  <->  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) )  Fn  A )
41 df-fn 5528 . . . . 5  |-  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  Fn  A  <->  ( Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) )  /\  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  =  A ) )
4240, 41bitri 249 . . . 4  |-  ( G  Fn  A  <->  ( Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  /\  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  =  A ) )
437, 38, 42sylanbrc 664 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  Fn  A )
44 dffn5 5845 . . 3  |-  ( G  Fn  A  <->  G  =  ( x  e.  A  |->  ( G `  x
) ) )
4543, 44sylib 196 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( G `
 x ) ) )
4639fveq1i 5799 . . . . 5  |-  ( G `
 x )  =  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) ) `  x )
47 dff1o4 5756 . . . . . . . . 9  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) : ( _V 
X.  { C }
)
-1-1-onto-> _V 
<->  ( ( 1st  |`  ( _V  X.  { C }
) )  Fn  ( _V  X.  { C }
)  /\  `' ( 1st  |`  ( _V  X.  { C } ) )  Fn  _V ) )
482, 47sylib 196 . . . . . . . 8  |-  ( C  e.  B  ->  (
( 1st  |`  ( _V 
X.  { C }
) )  Fn  ( _V  X.  { C }
)  /\  `' ( 1st  |`  ( _V  X.  { C } ) )  Fn  _V ) )
4948simprd 463 . . . . . . 7  |-  ( C  e.  B  ->  `' ( 1st  |`  ( _V  X.  { C } ) )  Fn  _V )
50 vex 3079 . . . . . . 7  |-  x  e. 
_V
51 fvco2 5874 . . . . . . 7  |-  ( ( `' ( 1st  |`  ( _V  X.  { C }
) )  Fn  _V  /\  x  e.  _V )  ->  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) ) `  x )  =  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) ) )
5249, 50, 51sylancl 662 . . . . . 6  |-  ( C  e.  B  ->  (
( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) ) `  x
)  =  ( F `
 ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x ) ) )
5352ad2antlr 726 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) ) `  x )  =  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) ) )
5446, 53syl5eq 2507 . . . 4  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( G `  x )  =  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) ) )
552adantr 465 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -1-1-onto-> _V )
5650a1i 11 . . . . . . . . . 10  |-  ( ( C  e.  B  /\  x  e.  A )  ->  x  e.  _V )
57 snidg 4010 . . . . . . . . . . 11  |-  ( C  e.  B  ->  C  e.  { C } )
5857adantr 465 . . . . . . . . . 10  |-  ( ( C  e.  B  /\  x  e.  A )  ->  C  e.  { C } )
59 opelxp 4976 . . . . . . . . . 10  |-  ( <.
x ,  C >.  e.  ( _V  X.  { C } )  <->  ( x  e.  _V  /\  C  e. 
{ C } ) )
6056, 58, 59sylanbrc 664 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  -> 
<. x ,  C >.  e.  ( _V  X.  { C } ) )
6155, 60jca 532 . . . . . . . 8  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -1-1-onto-> _V  /\  <. x ,  C >.  e.  ( _V  X.  { C }
) ) )
6250a1i 11 . . . . . . . . . . . 12  |-  ( C  e.  B  ->  x  e.  _V )
6362, 57, 59sylanbrc 664 . . . . . . . . . . 11  |-  ( C  e.  B  ->  <. x ,  C >.  e.  ( _V  X.  { C }
) )
64 fvres 5812 . . . . . . . . . . 11  |-  ( <.
x ,  C >.  e.  ( _V  X.  { C } )  ->  (
( 1st  |`  ( _V 
X.  { C }
) ) `  <. x ,  C >. )  =  ( 1st `  <. x ,  C >. )
)
6563, 64syl 16 . . . . . . . . . 10  |-  ( C  e.  B  ->  (
( 1st  |`  ( _V 
X.  { C }
) ) `  <. x ,  C >. )  =  ( 1st `  <. x ,  C >. )
)
6665adantr 465 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( ( 1st  |`  ( _V  X.  { C }
) ) `  <. x ,  C >. )  =  ( 1st `  <. x ,  C >. )
)
67 op1stg 6698 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( 1st `  <. x ,  C >. )  =  x )
6867ancoms 453 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( 1st `  <. x ,  C >. )  =  x )
6966, 68eqtrd 2495 . . . . . . . 8  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( ( 1st  |`  ( _V  X.  { C }
) ) `  <. x ,  C >. )  =  x )
70 f1ocnvfv 6093 . . . . . . . 8  |-  ( ( ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -1-1-onto-> _V  /\  <. x ,  C >.  e.  ( _V  X.  { C }
) )  ->  (
( ( 1st  |`  ( _V  X.  { C }
) ) `  <. x ,  C >. )  =  x  ->  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
)  =  <. x ,  C >. ) )
7161, 69, 70sylc 60 . . . . . . 7  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x )  =  <. x ,  C >. )
7271fveq2d 5802 . . . . . 6  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) )  =  ( F `  <. x ,  C >. ) )
7372adantll 713 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( F `  ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x ) )  =  ( F `  <. x ,  C >. )
)
74 df-ov 6202 . . . . 5  |-  ( x F C )  =  ( F `  <. x ,  C >. )
7573, 74syl6eqr 2513 . . . 4  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( F `  ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x ) )  =  ( x F C ) )
7654, 75eqtrd 2495 . . 3  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( G `  x )  =  ( x F C ) )
7776mpteq2dva 4485 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( x  e.  A  |->  ( G `  x
) )  =  ( x  e.  A  |->  ( x F C ) ) )
7845, 77eqtrd 2495 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( x F C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3076    i^i cin 3434    C_ wss 3435   {csn 3984   <.cop 3990    |-> cmpt 4457    X. cxp 4945   `'ccnv 4946   dom cdm 4947   ran crn 4948    |` cres 4949   "cima 4950    o. ccom 4951   Fun wfun 5519    Fn wfn 5520   -onto->wfo 5523   -1-1-onto->wf1o 5524   ` cfv 5525  (class class class)co 6199   1stc1st 6684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-1st 6686  df-2nd 6687
This theorem is referenced by:  curry2f  6777  curry2val  6778
  Copyright terms: Public domain W3C validator