MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2 Structured version   Unicode version

Theorem curry2 6880
Description: Composition with  `' ( 1st  |`  ( _V  X.  { C } ) ) turns any binary operation  F with a constant second operand into a function  G of the first operand only. This transformation is called "currying." (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1  |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )
Assertion
Ref Expression
curry2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( x F C ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, G

Proof of Theorem curry2
StepHypRef Expression
1 fnfun 5668 . . . . 5  |-  ( F  Fn  ( A  X.  B )  ->  Fun  F )
2 1stconst 6873 . . . . . 6  |-  ( C  e.  B  ->  ( 1st  |`  ( _V  X.  { C } ) ) : ( _V  X.  { C } ) -1-1-onto-> _V )
3 dff1o3 5812 . . . . . . 7  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) : ( _V 
X.  { C }
)
-1-1-onto-> _V 
<->  ( ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -onto-> _V  /\  Fun  `' ( 1st  |`  ( _V  X.  { C }
) ) ) )
43simprbi 464 . . . . . 6  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) : ( _V 
X.  { C }
)
-1-1-onto-> _V  ->  Fun  `' ( 1st  |`  ( _V  X.  { C } ) ) )
52, 4syl 16 . . . . 5  |-  ( C  e.  B  ->  Fun  `' ( 1st  |`  ( _V  X.  { C }
) ) )
6 funco 5616 . . . . 5  |-  ( ( Fun  F  /\  Fun  `' ( 1st  |`  ( _V  X.  { C }
) ) )  ->  Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) ) )
71, 5, 6syl2an 477 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) ) )
8 dmco 5505 . . . . 5  |-  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  =  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " dom  F )
9 fndm 5670 . . . . . . . 8  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
109adantr 465 . . . . . . 7  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  dom  F  =  ( A  X.  B ) )
1110imaeq2d 5327 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( `' `' ( 1st  |`  ( _V  X.  { C } ) ) " dom  F
)  =  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) ) )
12 imacnvcnv 5462 . . . . . . . . 9  |-  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) )  =  ( ( 1st  |`  ( _V  X.  { C } ) ) "
( A  X.  B
) )
13 df-ima 5002 . . . . . . . . 9  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) " ( A  X.  B ) )  =  ran  ( ( 1st  |`  ( _V  X.  { C } ) )  |`  ( A  X.  B ) )
14 resres 5276 . . . . . . . . . 10  |-  ( ( 1st  |`  ( _V  X.  { C } ) )  |`  ( A  X.  B ) )  =  ( 1st  |`  (
( _V  X.  { C } )  i^i  ( A  X.  B ) ) )
1514rneqi 5219 . . . . . . . . 9  |-  ran  (
( 1st  |`  ( _V 
X.  { C }
) )  |`  ( A  X.  B ) )  =  ran  ( 1st  |`  ( ( _V  X.  { C } )  i^i  ( A  X.  B
) ) )
1612, 13, 153eqtri 2476 . . . . . . . 8  |-  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) )  =  ran  ( 1st  |`  ( ( _V  X.  { C } )  i^i  ( A  X.  B
) ) )
17 inxp 5125 . . . . . . . . . . . . 13  |-  ( ( _V  X.  { C } )  i^i  ( A  X.  B ) )  =  ( ( _V 
i^i  A )  X.  ( { C }  i^i  B ) )
18 incom 3676 . . . . . . . . . . . . . . 15  |-  ( _V 
i^i  A )  =  ( A  i^i  _V )
19 inv1 3798 . . . . . . . . . . . . . . 15  |-  ( A  i^i  _V )  =  A
2018, 19eqtri 2472 . . . . . . . . . . . . . 14  |-  ( _V 
i^i  A )  =  A
2120xpeq1i 5009 . . . . . . . . . . . . 13  |-  ( ( _V  i^i  A )  X.  ( { C }  i^i  B ) )  =  ( A  X.  ( { C }  i^i  B ) )
2217, 21eqtri 2472 . . . . . . . . . . . 12  |-  ( ( _V  X.  { C } )  i^i  ( A  X.  B ) )  =  ( A  X.  ( { C }  i^i  B ) )
23 snssi 4159 . . . . . . . . . . . . . 14  |-  ( C  e.  B  ->  { C }  C_  B )
24 df-ss 3475 . . . . . . . . . . . . . 14  |-  ( { C }  C_  B  <->  ( { C }  i^i  B )  =  { C } )
2523, 24sylib 196 . . . . . . . . . . . . 13  |-  ( C  e.  B  ->  ( { C }  i^i  B
)  =  { C } )
2625xpeq2d 5013 . . . . . . . . . . . 12  |-  ( C  e.  B  ->  ( A  X.  ( { C }  i^i  B ) )  =  ( A  X.  { C } ) )
2722, 26syl5eq 2496 . . . . . . . . . . 11  |-  ( C  e.  B  ->  (
( _V  X.  { C } )  i^i  ( A  X.  B ) )  =  ( A  X.  { C } ) )
2827reseq2d 5263 . . . . . . . . . 10  |-  ( C  e.  B  ->  ( 1st  |`  ( ( _V 
X.  { C }
)  i^i  ( A  X.  B ) ) )  =  ( 1st  |`  ( A  X.  { C }
) ) )
2928rneqd 5220 . . . . . . . . 9  |-  ( C  e.  B  ->  ran  ( 1st  |`  ( ( _V  X.  { C }
)  i^i  ( A  X.  B ) ) )  =  ran  ( 1st  |`  ( A  X.  { C } ) ) )
30 1stconst 6873 . . . . . . . . . 10  |-  ( C  e.  B  ->  ( 1st  |`  ( A  X.  { C } ) ) : ( A  X.  { C } ) -1-1-onto-> A )
31 f1ofo 5813 . . . . . . . . . 10  |-  ( ( 1st  |`  ( A  X.  { C } ) ) : ( A  X.  { C }
)
-1-1-onto-> A  ->  ( 1st  |`  ( A  X.  { C }
) ) : ( A  X.  { C } ) -onto-> A )
32 forn 5788 . . . . . . . . . 10  |-  ( ( 1st  |`  ( A  X.  { C } ) ) : ( A  X.  { C }
) -onto-> A  ->  ran  ( 1st  |`  ( A  X.  { C } ) )  =  A )
3330, 31, 323syl 20 . . . . . . . . 9  |-  ( C  e.  B  ->  ran  ( 1st  |`  ( A  X.  { C } ) )  =  A )
3429, 33eqtrd 2484 . . . . . . . 8  |-  ( C  e.  B  ->  ran  ( 1st  |`  ( ( _V  X.  { C }
)  i^i  ( A  X.  B ) ) )  =  A )
3516, 34syl5eq 2496 . . . . . . 7  |-  ( C  e.  B  ->  ( `' `' ( 1st  |`  ( _V  X.  { C }
) ) " ( A  X.  B ) )  =  A )
3635adantl 466 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( `' `' ( 1st  |`  ( _V  X.  { C } ) ) " ( A  X.  B ) )  =  A )
3711, 36eqtrd 2484 . . . . 5  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( `' `' ( 1st  |`  ( _V  X.  { C } ) ) " dom  F
)  =  A )
388, 37syl5eq 2496 . . . 4  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) )  =  A )
39 curry2.1 . . . . . 6  |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )
4039fneq1i 5665 . . . . 5  |-  ( G  Fn  A  <->  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) )  Fn  A )
41 df-fn 5581 . . . . 5  |-  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  Fn  A  <->  ( Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) )  /\  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  =  A ) )
4240, 41bitri 249 . . . 4  |-  ( G  Fn  A  <->  ( Fun  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  /\  dom  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )  =  A ) )
437, 38, 42sylanbrc 664 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  Fn  A )
44 dffn5 5903 . . 3  |-  ( G  Fn  A  <->  G  =  ( x  e.  A  |->  ( G `  x
) ) )
4543, 44sylib 196 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( G `
 x ) ) )
4639fveq1i 5857 . . . . 5  |-  ( G `
 x )  =  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) ) `  x )
47 dff1o4 5814 . . . . . . . . 9  |-  ( ( 1st  |`  ( _V  X.  { C } ) ) : ( _V 
X.  { C }
)
-1-1-onto-> _V 
<->  ( ( 1st  |`  ( _V  X.  { C }
) )  Fn  ( _V  X.  { C }
)  /\  `' ( 1st  |`  ( _V  X.  { C } ) )  Fn  _V ) )
482, 47sylib 196 . . . . . . . 8  |-  ( C  e.  B  ->  (
( 1st  |`  ( _V 
X.  { C }
) )  Fn  ( _V  X.  { C }
)  /\  `' ( 1st  |`  ( _V  X.  { C } ) )  Fn  _V ) )
4948simprd 463 . . . . . . 7  |-  ( C  e.  B  ->  `' ( 1st  |`  ( _V  X.  { C } ) )  Fn  _V )
50 vex 3098 . . . . . . 7  |-  x  e. 
_V
51 fvco2 5933 . . . . . . 7  |-  ( ( `' ( 1st  |`  ( _V  X.  { C }
) )  Fn  _V  /\  x  e.  _V )  ->  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C }
) ) ) `  x )  =  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) ) )
5249, 50, 51sylancl 662 . . . . . 6  |-  ( C  e.  B  ->  (
( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) ) `  x
)  =  ( F `
 ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x ) ) )
5352ad2antlr 726 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) ) `  x )  =  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) ) )
5446, 53syl5eq 2496 . . . 4  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( G `  x )  =  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) ) )
552adantr 465 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -1-1-onto-> _V )
5650a1i 11 . . . . . . . . . 10  |-  ( ( C  e.  B  /\  x  e.  A )  ->  x  e.  _V )
57 snidg 4040 . . . . . . . . . . 11  |-  ( C  e.  B  ->  C  e.  { C } )
5857adantr 465 . . . . . . . . . 10  |-  ( ( C  e.  B  /\  x  e.  A )  ->  C  e.  { C } )
59 opelxp 5019 . . . . . . . . . 10  |-  ( <.
x ,  C >.  e.  ( _V  X.  { C } )  <->  ( x  e.  _V  /\  C  e. 
{ C } ) )
6056, 58, 59sylanbrc 664 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  -> 
<. x ,  C >.  e.  ( _V  X.  { C } ) )
6155, 60jca 532 . . . . . . . 8  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -1-1-onto-> _V  /\  <. x ,  C >.  e.  ( _V  X.  { C }
) ) )
6250a1i 11 . . . . . . . . . . . 12  |-  ( C  e.  B  ->  x  e.  _V )
6362, 57, 59sylanbrc 664 . . . . . . . . . . 11  |-  ( C  e.  B  ->  <. x ,  C >.  e.  ( _V  X.  { C }
) )
64 fvres 5870 . . . . . . . . . . 11  |-  ( <.
x ,  C >.  e.  ( _V  X.  { C } )  ->  (
( 1st  |`  ( _V 
X.  { C }
) ) `  <. x ,  C >. )  =  ( 1st `  <. x ,  C >. )
)
6563, 64syl 16 . . . . . . . . . 10  |-  ( C  e.  B  ->  (
( 1st  |`  ( _V 
X.  { C }
) ) `  <. x ,  C >. )  =  ( 1st `  <. x ,  C >. )
)
6665adantr 465 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( ( 1st  |`  ( _V  X.  { C }
) ) `  <. x ,  C >. )  =  ( 1st `  <. x ,  C >. )
)
67 op1stg 6797 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( 1st `  <. x ,  C >. )  =  x )
6867ancoms 453 . . . . . . . . 9  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( 1st `  <. x ,  C >. )  =  x )
6966, 68eqtrd 2484 . . . . . . . 8  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( ( 1st  |`  ( _V  X.  { C }
) ) `  <. x ,  C >. )  =  x )
70 f1ocnvfv 6169 . . . . . . . 8  |-  ( ( ( 1st  |`  ( _V  X.  { C }
) ) : ( _V  X.  { C } ) -1-1-onto-> _V  /\  <. x ,  C >.  e.  ( _V  X.  { C }
) )  ->  (
( ( 1st  |`  ( _V  X.  { C }
) ) `  <. x ,  C >. )  =  x  ->  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
)  =  <. x ,  C >. ) )
7161, 69, 70sylc 60 . . . . . . 7  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x )  =  <. x ,  C >. )
7271fveq2d 5860 . . . . . 6  |-  ( ( C  e.  B  /\  x  e.  A )  ->  ( F `  ( `' ( 1st  |`  ( _V  X.  { C }
) ) `  x
) )  =  ( F `  <. x ,  C >. ) )
7372adantll 713 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( F `  ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x ) )  =  ( F `  <. x ,  C >. )
)
74 df-ov 6284 . . . . 5  |-  ( x F C )  =  ( F `  <. x ,  C >. )
7573, 74syl6eqr 2502 . . . 4  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( F `  ( `' ( 1st  |`  ( _V  X.  { C } ) ) `  x ) )  =  ( x F C ) )
7654, 75eqtrd 2484 . . 3  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  /\  x  e.  A
)  ->  ( G `  x )  =  ( x F C ) )
7776mpteq2dva 4523 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( x  e.  A  |->  ( G `  x
) )  =  ( x  e.  A  |->  ( x F C ) ) )
7845, 77eqtrd 2484 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( x F C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   _Vcvv 3095    i^i cin 3460    C_ wss 3461   {csn 4014   <.cop 4020    |-> cmpt 4495    X. cxp 4987   `'ccnv 4988   dom cdm 4989   ran crn 4990    |` cres 4991   "cima 4992    o. ccom 4993   Fun wfun 5572    Fn wfn 5573   -onto->wfo 5576   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281   1stc1st 6783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-1st 6785  df-2nd 6786
This theorem is referenced by:  curry2f  6881  curry2val  6882
  Copyright terms: Public domain W3C validator