MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2cl Structured version   Unicode version

Theorem curf2cl 15627
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curf2.a  |-  A  =  ( Base `  C
)
curf2.c  |-  ( ph  ->  C  e.  Cat )
curf2.d  |-  ( ph  ->  D  e.  Cat )
curf2.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
curf2.b  |-  B  =  ( Base `  D
)
curf2.h  |-  H  =  ( Hom  `  C
)
curf2.i  |-  I  =  ( Id `  D
)
curf2.x  |-  ( ph  ->  X  e.  A )
curf2.y  |-  ( ph  ->  Y  e.  A )
curf2.k  |-  ( ph  ->  K  e.  ( X H Y ) )
curf2.l  |-  L  =  ( ( X ( 2nd `  G ) Y ) `  K
)
curf2.n  |-  N  =  ( D Nat  E )
Assertion
Ref Expression
curf2cl  |-  ( ph  ->  L  e.  ( ( ( 1st `  G
) `  X ) N ( ( 1st `  G ) `  Y
) ) )

Proof of Theorem curf2cl
Dummy variables  z  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.g . . . 4  |-  G  =  ( <. C ,  D >. curryF  F
)
2 curf2.a . . . 4  |-  A  =  ( Base `  C
)
3 curf2.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 curf2.d . . . 4  |-  ( ph  ->  D  e.  Cat )
5 curf2.f . . . 4  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
6 curf2.b . . . 4  |-  B  =  ( Base `  D
)
7 curf2.h . . . 4  |-  H  =  ( Hom  `  C
)
8 curf2.i . . . 4  |-  I  =  ( Id `  D
)
9 curf2.x . . . 4  |-  ( ph  ->  X  e.  A )
10 curf2.y . . . 4  |-  ( ph  ->  Y  e.  A )
11 curf2.k . . . 4  |-  ( ph  ->  K  e.  ( X H Y ) )
12 curf2.l . . . 4  |-  L  =  ( ( X ( 2nd `  G ) Y ) `  K
)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 15625 . . 3  |-  ( ph  ->  L  =  ( z  e.  B  |->  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) )
14 eqid 2457 . . . . . . . . . 10  |-  ( C  X.c  D )  =  ( C  X.c  D )
1514, 2, 6xpcbas 15574 . . . . . . . . 9  |-  ( A  X.  B )  =  ( Base `  ( C  X.c  D ) )
16 eqid 2457 . . . . . . . . 9  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
17 eqid 2457 . . . . . . . . 9  |-  ( Hom  `  E )  =  ( Hom  `  E )
18 relfunc 15278 . . . . . . . . . . 11  |-  Rel  (
( C  X.c  D ) 
Func  E )
19 1st2ndbr 6848 . . . . . . . . . . 11  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
2018, 5, 19sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
2120adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
22 opelxpi 5040 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  z  e.  B )  -> 
<. X ,  z >.  e.  ( A  X.  B
) )
239, 22sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  <. X , 
z >.  e.  ( A  X.  B ) )
24 opelxpi 5040 . . . . . . . . . 10  |-  ( ( Y  e.  A  /\  z  e.  B )  -> 
<. Y ,  z >.  e.  ( A  X.  B
) )
2510, 24sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  <. Y , 
z >.  e.  ( A  X.  B ) )
2615, 16, 17, 21, 23, 25funcf2 15284 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  ( <. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) : ( <. X ,  z >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. ) --> ( ( ( 1st `  F ) `  <. X ,  z >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. Y , 
z >. ) ) )
27 eqid 2457 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
289adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  B )  ->  X  e.  A )
29 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  B )  ->  z  e.  B )
3010adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  B )  ->  Y  e.  A )
3114, 2, 6, 7, 27, 28, 29, 30, 29, 16xpchom2 15582 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  ( <. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. )  =  ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) )
3231feq2d 5724 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) : ( <. X ,  z >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. ) --> ( ( ( 1st `  F ) `  <. X ,  z >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. Y , 
z >. ) )  <->  ( <. X ,  z >. ( 2nd `  F ) <. Y ,  z >. ) : ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) --> ( ( ( 1st `  F ) `
 <. X ,  z
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. Y ,  z >. )
) ) )
3326, 32mpbid 210 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  ( <. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) : ( ( X H Y )  X.  ( z ( Hom  `  D )
z ) ) --> ( ( ( 1st `  F
) `  <. X , 
z >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. Y ,  z
>. ) ) )
3411adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  K  e.  ( X H Y ) )
354adantr 465 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  D  e.  Cat )
366, 27, 8, 35, 29catidcl 15099 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  (
I `  z )  e.  ( z ( Hom  `  D ) z ) )
3733, 34, 36fovrnd 6446 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  F ) `  <. X ,  z >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. Y , 
z >. ) ) )
383adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  C  e.  Cat )
395adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
40 eqid 2457 . . . . . . . . 9  |-  ( ( 1st `  G ) `
 X )  =  ( ( 1st `  G
) `  X )
411, 2, 38, 35, 39, 6, 28, 40, 29curf11 15622 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( X ( 1st `  F ) z ) )
42 df-ov 6299 . . . . . . . 8  |-  ( X ( 1st `  F
) z )  =  ( ( 1st `  F
) `  <. X , 
z >. )
4341, 42syl6eq 2514 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( ( 1st `  F ) `  <. X ,  z >. )
)
44 eqid 2457 . . . . . . . . 9  |-  ( ( 1st `  G ) `
 Y )  =  ( ( 1st `  G
) `  Y )
451, 2, 38, 35, 39, 6, 30, 44, 29curf11 15622 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( Y ( 1st `  F ) z ) )
46 df-ov 6299 . . . . . . . 8  |-  ( Y ( 1st `  F
) z )  =  ( ( 1st `  F
) `  <. Y , 
z >. )
4745, 46syl6eq 2514 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( ( 1st `  F ) `  <. Y ,  z >. )
)
4843, 47oveq12d 6314 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  (
( ( 1st `  (
( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  =  ( ( ( 1st `  F
) `  <. X , 
z >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. Y ,  z
>. ) ) )
4937, 48eleqtrrd 2548 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
5049ralrimiva 2871 . . . 4  |-  ( ph  ->  A. z  e.  B  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
51 fvex 5882 . . . . . 6  |-  ( Base `  D )  e.  _V
526, 51eqeltri 2541 . . . . 5  |-  B  e. 
_V
53 mptelixpg 7525 . . . . 5  |-  ( B  e.  _V  ->  (
( z  e.  B  |->  ( K ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) ( I `  z ) ) )  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  <->  A. z  e.  B  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) ) )
5452, 53ax-mp 5 . . . 4  |-  ( ( z  e.  B  |->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) )  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  <->  A. z  e.  B  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
5550, 54sylibr 212 . . 3  |-  ( ph  ->  ( z  e.  B  |->  ( K ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) ( I `  z ) ) )  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
5613, 55eqeltrd 2545 . 2  |-  ( ph  ->  L  e.  X_ z  e.  B  ( (
( 1st `  (
( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
57 eqid 2457 . . . . . . . . . 10  |-  ( Id
`  C )  =  ( Id `  C
)
583adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  C  e.  Cat )
599adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  X  e.  A )
60 eqid 2457 . . . . . . . . . 10  |-  (comp `  C )  =  (comp `  C )
6110adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  Y  e.  A )
6211adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  K  e.  ( X H Y ) )
632, 7, 57, 58, 59, 60, 61, 62catrid 15101 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
)  =  K )
642, 7, 57, 58, 59, 60, 61, 62catlid 15100 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) K )  =  K )
6563, 64eqtr4d 2501 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
)  =  ( ( ( Id `  C
) `  Y )
( <. X ,  Y >. (comp `  C ) Y ) K ) )
664adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  D  e.  Cat )
67 simpr1 1002 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  z  e.  B )
68 eqid 2457 . . . . . . . . . 10  |-  (comp `  D )  =  (comp `  D )
69 simpr2 1003 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  w  e.  B )
70 simpr3 1004 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  f  e.  ( z ( Hom  `  D ) w ) )
716, 27, 8, 66, 67, 68, 69, 70catlid 15100 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( I `  w
) ( <. z ,  w >. (comp `  D
) w ) f )  =  f )
726, 27, 8, 66, 67, 68, 69, 70catrid 15101 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
f ( <. z ,  z >. (comp `  D ) w ) ( I `  z
) )  =  f )
7371, 72eqtr4d 2501 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( I `  w
) ( <. z ,  w >. (comp `  D
) w ) f )  =  ( f ( <. z ,  z
>. (comp `  D )
w ) ( I `
 z ) ) )
7465, 73opeq12d 4227 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) ,  ( ( I `  w ) ( <. z ,  w >. (comp `  D )
w ) f )
>.  =  <. ( ( ( Id `  C
) `  Y )
( <. X ,  Y >. (comp `  C ) Y ) K ) ,  ( f (
<. z ,  z >.
(comp `  D )
w ) ( I `
 z ) )
>. )
75 eqid 2457 . . . . . . . 8  |-  (comp `  ( C  X.c  D )
)  =  (comp `  ( C  X.c  D )
)
762, 7, 57, 58, 59catidcl 15099 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( Id `  C
) `  X )  e.  ( X H X ) )
776, 27, 8, 66, 69catidcl 15099 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
I `  w )  e.  ( w ( Hom  `  D ) w ) )
7814, 2, 6, 7, 27, 59, 67, 59, 69, 60, 68, 75, 61, 69, 76, 70, 62, 77xpcco2 15583 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. K ,  ( I `
 w ) >.
( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
)  =  <. ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) ,  ( ( I `  w ) ( <. z ,  w >. (comp `  D )
w ) f )
>. )
79363ad2antr1 1161 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
I `  z )  e.  ( z ( Hom  `  D ) z ) )
802, 7, 57, 58, 61catidcl 15099 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( Id `  C
) `  Y )  e.  ( Y H Y ) )
8114, 2, 6, 7, 27, 59, 67, 61, 67, 60, 68, 75, 61, 69, 62, 79, 80, 70xpcco2 15583 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. ( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
)  =  <. (
( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) K ) ,  ( f ( <. z ,  z
>. (comp `  D )
w ) ( I `
 z ) )
>. )
8274, 78, 813eqtr4d 2508 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. K ,  ( I `
 w ) >.
( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
)  =  ( <.
( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
) )
8382fveq2d 5876 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <. K ,  ( I `  w ) >. ( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
) )  =  ( ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <.
( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
) ) )
84 eqid 2457 . . . . . 6  |-  (comp `  E )  =  (comp `  E )
8520adantr 465 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
86233ad2antr1 1161 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. X , 
z >.  e.  ( A  X.  B ) )
87 opelxpi 5040 . . . . . . 7  |-  ( ( X  e.  A  /\  w  e.  B )  -> 
<. X ,  w >.  e.  ( A  X.  B
) )
8859, 69, 87syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. X ,  w >.  e.  ( A  X.  B ) )
89 opelxpi 5040 . . . . . . 7  |-  ( ( Y  e.  A  /\  w  e.  B )  -> 
<. Y ,  w >.  e.  ( A  X.  B
) )
9061, 69, 89syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. Y ,  w >.  e.  ( A  X.  B ) )
91 opelxpi 5040 . . . . . . . 8  |-  ( ( ( ( Id `  C ) `  X
)  e.  ( X H X )  /\  f  e.  ( z
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  X
) ,  f >.  e.  ( ( X H X )  X.  (
z ( Hom  `  D
) w ) ) )
9276, 70, 91syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  X ) ,  f >.  e.  ( ( X H X )  X.  ( z ( Hom  `  D
) w ) ) )
9314, 2, 6, 7, 27, 59, 67, 59, 69, 16xpchom2 15582 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. X ,  w >. )  =  ( ( X H X )  X.  ( z ( Hom  `  D ) w ) ) )
9492, 93eleqtrrd 2548 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  X ) ,  f >.  e.  (
<. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. X ,  w >. ) )
95 opelxpi 5040 . . . . . . . 8  |-  ( ( K  e.  ( X H Y )  /\  ( I `  w
)  e.  ( w ( Hom  `  D
) w ) )  ->  <. K ,  ( I `  w )
>.  e.  ( ( X H Y )  X.  ( w ( Hom  `  D ) w ) ) )
9662, 77, 95syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  w
) >.  e.  ( ( X H Y )  X.  ( w ( Hom  `  D )
w ) ) )
9714, 2, 6, 7, 27, 59, 69, 61, 69, 16xpchom2 15582 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. X ,  w >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. )  =  ( ( X H Y )  X.  ( w ( Hom  `  D ) w ) ) )
9896, 97eleqtrrd 2548 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  w
) >.  e.  ( <. X ,  w >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. ) )
9915, 16, 75, 84, 85, 86, 88, 90, 94, 98funcco 15287 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <. K ,  ( I `  w ) >. ( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
) )  =  ( ( ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) `  <. K , 
( I `  w
) >. ) ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
) )
100253ad2antr1 1161 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. Y , 
z >.  e.  ( A  X.  B ) )
101 opelxpi 5040 . . . . . . . 8  |-  ( ( K  e.  ( X H Y )  /\  ( I `  z
)  e.  ( z ( Hom  `  D
) z ) )  ->  <. K ,  ( I `  z )
>.  e.  ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) )
10262, 79, 101syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  z
) >.  e.  ( ( X H Y )  X.  ( z ( Hom  `  D )
z ) ) )
10314, 2, 6, 7, 27, 59, 67, 61, 67, 16xpchom2 15582 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. )  =  ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) )
104102, 103eleqtrrd 2548 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  z
) >.  e.  ( <. X ,  z >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. ) )
105 opelxpi 5040 . . . . . . . 8  |-  ( ( ( ( Id `  C ) `  Y
)  e.  ( Y H Y )  /\  f  e.  ( z
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  Y
) ,  f >.  e.  ( ( Y H Y )  X.  (
z ( Hom  `  D
) w ) ) )
10680, 70, 105syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  Y ) ,  f >.  e.  ( ( Y H Y )  X.  ( z ( Hom  `  D
) w ) ) )
10714, 2, 6, 7, 27, 61, 67, 61, 69, 16xpchom2 15582 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. Y ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. )  =  ( ( Y H Y )  X.  ( z ( Hom  `  D ) w ) ) )
108106, 107eleqtrrd 2548 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  Y ) ,  f >.  e.  (
<. Y ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. ) )
10915, 16, 75, 84, 85, 86, 100, 90, 104, 108funcco 15287 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <.
( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
) )  =  ( ( ( <. Y , 
z >. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
( <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. Y ,  z >. ) >. (comp `  E )
( ( 1st `  F
) `  <. Y ,  w >. ) ) ( ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. ) ) )
11083, 99, 1093eqtr3d 2506 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) `  <. K , 
( I `  w
) >. ) ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
)  =  ( ( ( <. Y ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
( <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. Y ,  z >. ) >. (comp `  E )
( ( 1st `  F
) `  <. Y ,  w >. ) ) ( ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. ) ) )
1115adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
1121, 2, 58, 66, 111, 6, 59, 40, 67curf11 15622 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( X ( 1st `  F ) z ) )
113112, 42syl6eq 2514 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( ( 1st `  F ) `  <. X ,  z >. )
)
1141, 2, 58, 66, 111, 6, 59, 40, 69curf11 15622 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  w )  =  ( X ( 1st `  F ) w ) )
115 df-ov 6299 . . . . . . . 8  |-  ( X ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. X ,  w >. )
116114, 115syl6eq 2514 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  w )  =  ( ( 1st `  F ) `  <. X ,  w >. )
)
117113, 116opeq12d 4227 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >.  =  <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. X ,  w >. ) >. )
1181, 2, 58, 66, 111, 6, 61, 44, 69curf11 15622 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  w )  =  ( Y ( 1st `  F ) w ) )
119 df-ov 6299 . . . . . . 7  |-  ( Y ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. Y ,  w >. )
120118, 119syl6eq 2514 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  w )  =  ( ( 1st `  F ) `  <. Y ,  w >. )
)
121117, 120oveq12d 6314 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. ( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) )
1221, 2, 58, 66, 111, 6, 7, 8, 59, 61, 62, 12, 69curf2val 15626 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  w )  =  ( K (
<. X ,  w >. ( 2nd `  F )
<. Y ,  w >. ) ( I `  w
) ) )
123 df-ov 6299 . . . . . 6  |-  ( K ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) ( I `  w ) )  =  ( ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) `  <. K , 
( I `  w
) >. )
124122, 123syl6eq 2514 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  w )  =  ( ( <. X ,  w >. ( 2nd `  F )
<. Y ,  w >. ) `
 <. K ,  ( I `  w )
>. ) )
1251, 2, 58, 66, 111, 6, 59, 40, 67, 27, 57, 69, 70curf12 15623 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  X )
) w ) `  f )  =  ( ( ( Id `  C ) `  X
) ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) f ) )
126 df-ov 6299 . . . . . 6  |-  ( ( ( Id `  C
) `  X )
( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) f )  =  ( ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
127125, 126syl6eq 2514 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  X )
) w ) `  f )  =  ( ( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
)
128121, 124, 127oveq123d 6317 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( L `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( <. X ,  w >. ( 2nd `  F )
<. Y ,  w >. ) `
 <. K ,  ( I `  w )
>. ) ( <. (
( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
) )
1291, 2, 58, 66, 111, 6, 61, 44, 67curf11 15622 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( Y ( 1st `  F ) z ) )
130129, 46syl6eq 2514 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( ( 1st `  F ) `  <. Y ,  z >. )
)
131113, 130opeq12d 4227 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >.  =  <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. Y ,  z >. ) >. )
132131, 120oveq12d 6314 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. ( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. Y , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) )
1331, 2, 58, 66, 111, 6, 61, 44, 67, 27, 57, 69, 70curf12 15623 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  Y )
) w ) `  f )  =  ( ( ( Id `  C ) `  Y
) ( <. Y , 
z >. ( 2nd `  F
) <. Y ,  w >. ) f ) )
134 df-ov 6299 . . . . . 6  |-  ( ( ( Id `  C
) `  Y )
( <. Y ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) f )  =  ( ( <. Y , 
z >. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
135133, 134syl6eq 2514 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  Y )
) w ) `  f )  =  ( ( <. Y ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
)
1361, 2, 58, 66, 111, 6, 7, 8, 59, 61, 62, 12, 67curf2val 15626 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  z )  =  ( K (
<. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) )
137 df-ov 6299 . . . . . 6  |-  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  =  ( ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. )
138136, 137syl6eq 2514 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  z )  =  ( ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) `  <. K , 
( I `  z
) >. ) )
139132, 135, 138oveq123d 6317 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( ( z ( 2nd `  ( ( 1st `  G ) `
 Y ) ) w ) `  f
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) )  =  ( ( ( <. Y ,  z >. ( 2nd `  F )
<. Y ,  w >. ) `
 <. ( ( Id
`  C ) `  Y ) ,  f
>. ) ( <. (
( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. Y , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. ) ) )
140110, 128, 1393eqtr4d 2508 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( L `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( z ( 2nd `  (
( 1st `  G
) `  Y )
) w ) `  f ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) ) )
141140ralrimivvva 2879 . 2  |-  ( ph  ->  A. z  e.  B  A. w  e.  B  A. f  e.  (
z ( Hom  `  D
) w ) ( ( L `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( z ( 2nd `  (
( 1st `  G
) `  Y )
) w ) `  f ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) ) )
142 curf2.n . . 3  |-  N  =  ( D Nat  E )
1431, 2, 3, 4, 5, 6, 9, 40curf1cl 15624 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  X )  e.  ( D  Func  E
) )
1441, 2, 3, 4, 5, 6, 10, 44curf1cl 15624 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  Y )  e.  ( D  Func  E
) )
145142, 6, 27, 17, 84, 143, 144isnat2 15364 . 2  |-  ( ph  ->  ( L  e.  ( ( ( 1st `  G
) `  X ) N ( ( 1st `  G ) `  Y
) )  <->  ( L  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  /\  A. z  e.  B  A. w  e.  B  A. f  e.  ( z ( Hom  `  D ) w ) ( ( L `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( z ( 2nd `  (
( 1st `  G
) `  Y )
) w ) `  f ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) ) ) ) )
14656, 141, 145mpbir2and 922 1  |-  ( ph  ->  L  e.  ( ( ( 1st `  G
) `  X ) N ( ( 1st `  G ) `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109   <.cop 4038   class class class wbr 4456    |-> cmpt 4515    X. cxp 5006   Rel wrel 5013   -->wf 5590   ` cfv 5594  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   X_cixp 7488   Basecbs 14644   Hom chom 14723  compcco 14724   Catccat 15081   Idccid 15082    Func cfunc 15270   Nat cnat 15357    X.c cxpc 15564   curryF ccurf 15606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-hom 14736  df-cco 14737  df-cat 15085  df-cid 15086  df-func 15274  df-nat 15359  df-xpc 15568  df-curf 15610
This theorem is referenced by:  curfcl  15628
  Copyright terms: Public domain W3C validator