MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2cl Structured version   Unicode version

Theorem curf2cl 15152
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curf2.a  |-  A  =  ( Base `  C
)
curf2.c  |-  ( ph  ->  C  e.  Cat )
curf2.d  |-  ( ph  ->  D  e.  Cat )
curf2.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
curf2.b  |-  B  =  ( Base `  D
)
curf2.h  |-  H  =  ( Hom  `  C
)
curf2.i  |-  I  =  ( Id `  D
)
curf2.x  |-  ( ph  ->  X  e.  A )
curf2.y  |-  ( ph  ->  Y  e.  A )
curf2.k  |-  ( ph  ->  K  e.  ( X H Y ) )
curf2.l  |-  L  =  ( ( X ( 2nd `  G ) Y ) `  K
)
curf2.n  |-  N  =  ( D Nat  E )
Assertion
Ref Expression
curf2cl  |-  ( ph  ->  L  e.  ( ( ( 1st `  G
) `  X ) N ( ( 1st `  G ) `  Y
) ) )

Proof of Theorem curf2cl
Dummy variables  z  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.g . . . 4  |-  G  =  ( <. C ,  D >. curryF  F
)
2 curf2.a . . . 4  |-  A  =  ( Base `  C
)
3 curf2.c . . . 4  |-  ( ph  ->  C  e.  Cat )
4 curf2.d . . . 4  |-  ( ph  ->  D  e.  Cat )
5 curf2.f . . . 4  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
6 curf2.b . . . 4  |-  B  =  ( Base `  D
)
7 curf2.h . . . 4  |-  H  =  ( Hom  `  C
)
8 curf2.i . . . 4  |-  I  =  ( Id `  D
)
9 curf2.x . . . 4  |-  ( ph  ->  X  e.  A )
10 curf2.y . . . 4  |-  ( ph  ->  Y  e.  A )
11 curf2.k . . . 4  |-  ( ph  ->  K  e.  ( X H Y ) )
12 curf2.l . . . 4  |-  L  =  ( ( X ( 2nd `  G ) Y ) `  K
)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 15150 . . 3  |-  ( ph  ->  L  =  ( z  e.  B  |->  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) )
14 eqid 2451 . . . . . . . . . 10  |-  ( C  X.c  D )  =  ( C  X.c  D )
1514, 2, 6xpcbas 15099 . . . . . . . . 9  |-  ( A  X.  B )  =  ( Base `  ( C  X.c  D ) )
16 eqid 2451 . . . . . . . . 9  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
17 eqid 2451 . . . . . . . . 9  |-  ( Hom  `  E )  =  ( Hom  `  E )
18 relfunc 14883 . . . . . . . . . . 11  |-  Rel  (
( C  X.c  D ) 
Func  E )
19 1st2ndbr 6726 . . . . . . . . . . 11  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
2018, 5, 19sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
2120adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
22 opelxpi 4972 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  z  e.  B )  -> 
<. X ,  z >.  e.  ( A  X.  B
) )
239, 22sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  <. X , 
z >.  e.  ( A  X.  B ) )
24 opelxpi 4972 . . . . . . . . . 10  |-  ( ( Y  e.  A  /\  z  e.  B )  -> 
<. Y ,  z >.  e.  ( A  X.  B
) )
2510, 24sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  <. Y , 
z >.  e.  ( A  X.  B ) )
2615, 16, 17, 21, 23, 25funcf2 14889 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  ( <. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) : ( <. X ,  z >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. ) --> ( ( ( 1st `  F ) `  <. X ,  z >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. Y , 
z >. ) ) )
27 eqid 2451 . . . . . . . . . 10  |-  ( Hom  `  D )  =  ( Hom  `  D )
289adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  B )  ->  X  e.  A )
29 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  B )  ->  z  e.  B )
3010adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  B )  ->  Y  e.  A )
3114, 2, 6, 7, 27, 28, 29, 30, 29, 16xpchom2 15107 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  ( <. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. )  =  ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) )
3231feq2d 5648 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) : ( <. X ,  z >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. ) --> ( ( ( 1st `  F ) `  <. X ,  z >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. Y , 
z >. ) )  <->  ( <. X ,  z >. ( 2nd `  F ) <. Y ,  z >. ) : ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) --> ( ( ( 1st `  F ) `
 <. X ,  z
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. Y ,  z >. )
) ) )
3326, 32mpbid 210 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  ( <. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) : ( ( X H Y )  X.  ( z ( Hom  `  D )
z ) ) --> ( ( ( 1st `  F
) `  <. X , 
z >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. Y ,  z
>. ) ) )
3411adantr 465 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  K  e.  ( X H Y ) )
354adantr 465 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  D  e.  Cat )
366, 27, 8, 35, 29catidcl 14731 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  (
I `  z )  e.  ( z ( Hom  `  D ) z ) )
3733, 34, 36fovrnd 6338 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  F ) `  <. X ,  z >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. Y , 
z >. ) ) )
383adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  C  e.  Cat )
395adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
40 eqid 2451 . . . . . . . . 9  |-  ( ( 1st `  G ) `
 X )  =  ( ( 1st `  G
) `  X )
411, 2, 38, 35, 39, 6, 28, 40, 29curf11 15147 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( X ( 1st `  F ) z ) )
42 df-ov 6196 . . . . . . . 8  |-  ( X ( 1st `  F
) z )  =  ( ( 1st `  F
) `  <. X , 
z >. )
4341, 42syl6eq 2508 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( ( 1st `  F ) `  <. X ,  z >. )
)
44 eqid 2451 . . . . . . . . 9  |-  ( ( 1st `  G ) `
 Y )  =  ( ( 1st `  G
) `  Y )
451, 2, 38, 35, 39, 6, 30, 44, 29curf11 15147 . . . . . . . 8  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( Y ( 1st `  F ) z ) )
46 df-ov 6196 . . . . . . . 8  |-  ( Y ( 1st `  F
) z )  =  ( ( 1st `  F
) `  <. Y , 
z >. )
4745, 46syl6eq 2508 . . . . . . 7  |-  ( (
ph  /\  z  e.  B )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( ( 1st `  F ) `  <. Y ,  z >. )
)
4843, 47oveq12d 6211 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  (
( ( 1st `  (
( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  =  ( ( ( 1st `  F
) `  <. X , 
z >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. Y ,  z
>. ) ) )
4937, 48eleqtrrd 2542 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
5049ralrimiva 2825 . . . 4  |-  ( ph  ->  A. z  e.  B  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
51 fvex 5802 . . . . . 6  |-  ( Base `  D )  e.  _V
526, 51eqeltri 2535 . . . . 5  |-  B  e. 
_V
53 mptelixpg 7403 . . . . 5  |-  ( B  e.  _V  ->  (
( z  e.  B  |->  ( K ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) ( I `  z ) ) )  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  <->  A. z  e.  B  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) ) )
5452, 53ax-mp 5 . . . 4  |-  ( ( z  e.  B  |->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) )  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  <->  A. z  e.  B  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  e.  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
5550, 54sylibr 212 . . 3  |-  ( ph  ->  ( z  e.  B  |->  ( K ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) ( I `  z ) ) )  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
5613, 55eqeltrd 2539 . 2  |-  ( ph  ->  L  e.  X_ z  e.  B  ( (
( 1st `  (
( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
) )
57 eqid 2451 . . . . . . . . . 10  |-  ( Id
`  C )  =  ( Id `  C
)
583adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  C  e.  Cat )
599adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  X  e.  A )
60 eqid 2451 . . . . . . . . . 10  |-  (comp `  C )  =  (comp `  C )
6110adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  Y  e.  A )
6211adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  K  e.  ( X H Y ) )
632, 7, 57, 58, 59, 60, 61, 62catrid 14733 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
)  =  K )
642, 7, 57, 58, 59, 60, 61, 62catlid 14732 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) K )  =  K )
6563, 64eqtr4d 2495 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
)  =  ( ( ( Id `  C
) `  Y )
( <. X ,  Y >. (comp `  C ) Y ) K ) )
664adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  D  e.  Cat )
67 simpr1 994 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  z  e.  B )
68 eqid 2451 . . . . . . . . . 10  |-  (comp `  D )  =  (comp `  D )
69 simpr2 995 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  w  e.  B )
70 simpr3 996 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  f  e.  ( z ( Hom  `  D ) w ) )
716, 27, 8, 66, 67, 68, 69, 70catlid 14732 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( I `  w
) ( <. z ,  w >. (comp `  D
) w ) f )  =  f )
726, 27, 8, 66, 67, 68, 69, 70catrid 14733 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
f ( <. z ,  z >. (comp `  D ) w ) ( I `  z
) )  =  f )
7371, 72eqtr4d 2495 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( I `  w
) ( <. z ,  w >. (comp `  D
) w ) f )  =  ( f ( <. z ,  z
>. (comp `  D )
w ) ( I `
 z ) ) )
7465, 73opeq12d 4168 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) ,  ( ( I `  w ) ( <. z ,  w >. (comp `  D )
w ) f )
>.  =  <. ( ( ( Id `  C
) `  Y )
( <. X ,  Y >. (comp `  C ) Y ) K ) ,  ( f (
<. z ,  z >.
(comp `  D )
w ) ( I `
 z ) )
>. )
75 eqid 2451 . . . . . . . 8  |-  (comp `  ( C  X.c  D )
)  =  (comp `  ( C  X.c  D )
)
762, 7, 57, 58, 59catidcl 14731 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( Id `  C
) `  X )  e.  ( X H X ) )
776, 27, 8, 66, 69catidcl 14731 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
I `  w )  e.  ( w ( Hom  `  D ) w ) )
7814, 2, 6, 7, 27, 59, 67, 59, 69, 60, 68, 75, 61, 69, 76, 70, 62, 77xpcco2 15108 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. K ,  ( I `
 w ) >.
( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
)  =  <. ( K ( <. X ,  X >. (comp `  C
) Y ) ( ( Id `  C
) `  X )
) ,  ( ( I `  w ) ( <. z ,  w >. (comp `  D )
w ) f )
>. )
79363ad2antr1 1153 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
I `  z )  e.  ( z ( Hom  `  D ) z ) )
802, 7, 57, 58, 61catidcl 14731 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( Id `  C
) `  Y )  e.  ( Y H Y ) )
8114, 2, 6, 7, 27, 59, 67, 61, 67, 60, 68, 75, 61, 69, 62, 79, 80, 70xpcco2 15108 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. ( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
)  =  <. (
( ( Id `  C ) `  Y
) ( <. X ,  Y >. (comp `  C
) Y ) K ) ,  ( f ( <. z ,  z
>. (comp `  D )
w ) ( I `
 z ) )
>. )
8274, 78, 813eqtr4d 2502 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. K ,  ( I `
 w ) >.
( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
)  =  ( <.
( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
) )
8382fveq2d 5796 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <. K ,  ( I `  w ) >. ( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
) )  =  ( ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <.
( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
) ) )
84 eqid 2451 . . . . . 6  |-  (comp `  E )  =  (comp `  E )
8520adantr 465 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( 1st `  F ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  F ) )
86233ad2antr1 1153 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. X , 
z >.  e.  ( A  X.  B ) )
87 opelxpi 4972 . . . . . . 7  |-  ( ( X  e.  A  /\  w  e.  B )  -> 
<. X ,  w >.  e.  ( A  X.  B
) )
8859, 69, 87syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. X ,  w >.  e.  ( A  X.  B ) )
89 opelxpi 4972 . . . . . . 7  |-  ( ( Y  e.  A  /\  w  e.  B )  -> 
<. Y ,  w >.  e.  ( A  X.  B
) )
9061, 69, 89syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. Y ,  w >.  e.  ( A  X.  B ) )
91 opelxpi 4972 . . . . . . . 8  |-  ( ( ( ( Id `  C ) `  X
)  e.  ( X H X )  /\  f  e.  ( z
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  X
) ,  f >.  e.  ( ( X H X )  X.  (
z ( Hom  `  D
) w ) ) )
9276, 70, 91syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  X ) ,  f >.  e.  ( ( X H X )  X.  ( z ( Hom  `  D
) w ) ) )
9314, 2, 6, 7, 27, 59, 67, 59, 69, 16xpchom2 15107 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. X ,  w >. )  =  ( ( X H X )  X.  ( z ( Hom  `  D ) w ) ) )
9492, 93eleqtrrd 2542 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  X ) ,  f >.  e.  (
<. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. X ,  w >. ) )
95 opelxpi 4972 . . . . . . . 8  |-  ( ( K  e.  ( X H Y )  /\  ( I `  w
)  e.  ( w ( Hom  `  D
) w ) )  ->  <. K ,  ( I `  w )
>.  e.  ( ( X H Y )  X.  ( w ( Hom  `  D ) w ) ) )
9662, 77, 95syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  w
) >.  e.  ( ( X H Y )  X.  ( w ( Hom  `  D )
w ) ) )
9714, 2, 6, 7, 27, 59, 69, 61, 69, 16xpchom2 15107 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. X ,  w >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. )  =  ( ( X H Y )  X.  ( w ( Hom  `  D ) w ) ) )
9896, 97eleqtrrd 2542 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  w
) >.  e.  ( <. X ,  w >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. ) )
9915, 16, 75, 84, 85, 86, 88, 90, 94, 98funcco 14892 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <. K ,  ( I `  w ) >. ( <. <. X ,  z
>. ,  <. X ,  w >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. ( ( Id `  C ) `  X
) ,  f >.
) )  =  ( ( ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) `  <. K , 
( I `  w
) >. ) ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
) )
100253ad2antr1 1153 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. Y , 
z >.  e.  ( A  X.  B ) )
101 opelxpi 4972 . . . . . . . 8  |-  ( ( K  e.  ( X H Y )  /\  ( I `  z
)  e.  ( z ( Hom  `  D
) z ) )  ->  <. K ,  ( I `  z )
>.  e.  ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) )
10262, 79, 101syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  z
) >.  e.  ( ( X H Y )  X.  ( z ( Hom  `  D )
z ) ) )
10314, 2, 6, 7, 27, 59, 67, 61, 67, 16xpchom2 15107 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. X ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. )  =  ( ( X H Y )  X.  ( z ( Hom  `  D ) z ) ) )
104102, 103eleqtrrd 2542 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. K , 
( I `  z
) >.  e.  ( <. X ,  z >. ( Hom  `  ( C  X.c  D ) ) <. Y ,  z >. ) )
105 opelxpi 4972 . . . . . . . 8  |-  ( ( ( ( Id `  C ) `  Y
)  e.  ( Y H Y )  /\  f  e.  ( z
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  Y
) ,  f >.  e.  ( ( Y H Y )  X.  (
z ( Hom  `  D
) w ) ) )
10680, 70, 105syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  Y ) ,  f >.  e.  ( ( Y H Y )  X.  ( z ( Hom  `  D
) w ) ) )
10714, 2, 6, 7, 27, 61, 67, 61, 69, 16xpchom2 15107 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. Y ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. )  =  ( ( Y H Y )  X.  ( z ( Hom  `  D ) w ) ) )
108106, 107eleqtrrd 2542 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( Id `  C
) `  Y ) ,  f >.  e.  (
<. Y ,  z >.
( Hom  `  ( C  X.c  D ) ) <. Y ,  w >. ) )
10915, 16, 75, 84, 85, 86, 100, 90, 104, 108funcco 14892 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( <. X ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  ( <.
( ( Id `  C ) `  Y
) ,  f >.
( <. <. X ,  z
>. ,  <. Y , 
z >. >. (comp `  ( C  X.c  D ) ) <. Y ,  w >. )
<. K ,  ( I `
 z ) >.
) )  =  ( ( ( <. Y , 
z >. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
( <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. Y ,  z >. ) >. (comp `  E )
( ( 1st `  F
) `  <. Y ,  w >. ) ) ( ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. ) ) )
11083, 99, 1093eqtr3d 2500 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) `  <. K , 
( I `  w
) >. ) ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
)  =  ( ( ( <. Y ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
( <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. Y ,  z >. ) >. (comp `  E )
( ( 1st `  F
) `  <. Y ,  w >. ) ) ( ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. ) ) )
1115adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
1121, 2, 58, 66, 111, 6, 59, 40, 67curf11 15147 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( X ( 1st `  F ) z ) )
113112, 42syl6eq 2508 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  z )  =  ( ( 1st `  F ) `  <. X ,  z >. )
)
1141, 2, 58, 66, 111, 6, 59, 40, 69curf11 15147 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  w )  =  ( X ( 1st `  F ) w ) )
115 df-ov 6196 . . . . . . . 8  |-  ( X ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. X ,  w >. )
116114, 115syl6eq 2508 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  X )
) `  w )  =  ( ( 1st `  F ) `  <. X ,  w >. )
)
117113, 116opeq12d 4168 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >.  =  <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. X ,  w >. ) >. )
1181, 2, 58, 66, 111, 6, 61, 44, 69curf11 15147 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  w )  =  ( Y ( 1st `  F ) w ) )
119 df-ov 6196 . . . . . . 7  |-  ( Y ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. Y ,  w >. )
120118, 119syl6eq 2508 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  w )  =  ( ( 1st `  F ) `  <. Y ,  w >. )
)
121117, 120oveq12d 6211 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. ( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) )
1221, 2, 58, 66, 111, 6, 7, 8, 59, 61, 62, 12, 69curf2val 15151 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  w )  =  ( K (
<. X ,  w >. ( 2nd `  F )
<. Y ,  w >. ) ( I `  w
) ) )
123 df-ov 6196 . . . . . 6  |-  ( K ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) ( I `  w ) )  =  ( ( <. X ,  w >. ( 2nd `  F
) <. Y ,  w >. ) `  <. K , 
( I `  w
) >. )
124122, 123syl6eq 2508 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  w )  =  ( ( <. X ,  w >. ( 2nd `  F )
<. Y ,  w >. ) `
 <. K ,  ( I `  w )
>. ) )
1251, 2, 58, 66, 111, 6, 59, 40, 67, 27, 57, 69, 70curf12 15148 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  X )
) w ) `  f )  =  ( ( ( Id `  C ) `  X
) ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) f ) )
126 df-ov 6196 . . . . . 6  |-  ( ( ( Id `  C
) `  X )
( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) f )  =  ( ( <. X , 
z >. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
127125, 126syl6eq 2508 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  X )
) w ) `  f )  =  ( ( <. X ,  z
>. ( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
)
128121, 124, 127oveq123d 6214 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( L `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( <. X ,  w >. ( 2nd `  F )
<. Y ,  w >. ) `
 <. K ,  ( I `  w )
>. ) ( <. (
( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. X ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. X ,  w >. ) `  <. (
( Id `  C
) `  X ) ,  f >. )
) )
1291, 2, 58, 66, 111, 6, 61, 44, 67curf11 15147 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( Y ( 1st `  F ) z ) )
130129, 46syl6eq 2508 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( 1st `  (
( 1st `  G
) `  Y )
) `  z )  =  ( ( 1st `  F ) `  <. Y ,  z >. )
)
131113, 130opeq12d 4168 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >.  =  <. ( ( 1st `  F ) `  <. X ,  z >. ) ,  ( ( 1st `  F ) `  <. Y ,  z >. ) >. )
132131, 120oveq12d 6211 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( <. ( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. Y , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) )
1331, 2, 58, 66, 111, 6, 61, 44, 67, 27, 57, 69, 70curf12 15148 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  Y )
) w ) `  f )  =  ( ( ( Id `  C ) `  Y
) ( <. Y , 
z >. ( 2nd `  F
) <. Y ,  w >. ) f ) )
134 df-ov 6196 . . . . . 6  |-  ( ( ( Id `  C
) `  Y )
( <. Y ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) f )  =  ( ( <. Y , 
z >. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
135133, 134syl6eq 2508 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( z ( 2nd `  ( ( 1st `  G
) `  Y )
) w ) `  f )  =  ( ( <. Y ,  z
>. ( 2nd `  F
) <. Y ,  w >. ) `  <. (
( Id `  C
) `  Y ) ,  f >. )
)
1361, 2, 58, 66, 111, 6, 7, 8, 59, 61, 62, 12, 67curf2val 15151 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  z )  =  ( K (
<. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) )
137 df-ov 6196 . . . . . 6  |-  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) )  =  ( ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. )
138136, 137syl6eq 2508 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  ( L `  z )  =  ( ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) `  <. K , 
( I `  z
) >. ) )
139132, 135, 138oveq123d 6214 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( ( z ( 2nd `  ( ( 1st `  G ) `
 Y ) ) w ) `  f
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) )  =  ( ( ( <. Y ,  z >. ( 2nd `  F )
<. Y ,  w >. ) `
 <. ( ( Id
`  C ) `  Y ) ,  f
>. ) ( <. (
( 1st `  F
) `  <. X , 
z >. ) ,  ( ( 1st `  F
) `  <. Y , 
z >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. Y ,  w >. ) ) ( (
<. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) `  <. K , 
( I `  z
) >. ) ) )
140110, 128, 1393eqtr4d 2502 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  w  e.  B  /\  f  e.  ( z ( Hom  `  D ) w ) ) )  ->  (
( L `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( z ( 2nd `  (
( 1st `  G
) `  Y )
) w ) `  f ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) ) )
141140ralrimivvva 2908 . 2  |-  ( ph  ->  A. z  e.  B  A. w  e.  B  A. f  e.  (
z ( Hom  `  D
) w ) ( ( L `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( z ( 2nd `  (
( 1st `  G
) `  Y )
) w ) `  f ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) ) )
142 curf2.n . . 3  |-  N  =  ( D Nat  E )
1431, 2, 3, 4, 5, 6, 9, 40curf1cl 15149 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  X )  e.  ( D  Func  E
) )
1441, 2, 3, 4, 5, 6, 10, 44curf1cl 15149 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  Y )  e.  ( D  Func  E
) )
145142, 6, 27, 17, 84, 143, 144isnat2 14969 . 2  |-  ( ph  ->  ( L  e.  ( ( ( 1st `  G
) `  X ) N ( ( 1st `  G ) `  Y
) )  <->  ( L  e.  X_ z  e.  B  ( ( ( 1st `  ( ( 1st `  G
) `  X )
) `  z )
( Hom  `  E ) ( ( 1st `  (
( 1st `  G
) `  Y )
) `  z )
)  /\  A. z  e.  B  A. w  e.  B  A. f  e.  ( z ( Hom  `  D ) w ) ( ( L `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( ( z ( 2nd `  (
( 1st `  G
) `  X )
) w ) `  f ) )  =  ( ( ( z ( 2nd `  (
( 1st `  G
) `  Y )
) w ) `  f ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  z ) ,  ( ( 1st `  ( ( 1st `  G
) `  Y )
) `  z ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Y )
) `  w )
) ( L `  z ) ) ) ) )
14656, 141, 145mpbir2and 913 1  |-  ( ph  ->  L  e.  ( ( ( 1st `  G
) `  X ) N ( ( 1st `  G ) `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3071   <.cop 3984   class class class wbr 4393    |-> cmpt 4451    X. cxp 4939   Rel wrel 4946   -->wf 5515   ` cfv 5519  (class class class)co 6193   1stc1st 6678   2ndc2nd 6679   X_cixp 7366   Basecbs 14285   Hom chom 14360  compcco 14361   Catccat 14713   Idccid 14714    Func cfunc 14875   Nat cnat 14962    X.c cxpc 15089   curryF ccurf 15131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-fz 11548  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-hom 14373  df-cco 14374  df-cat 14717  df-cid 14718  df-func 14879  df-nat 14964  df-xpc 15093  df-curf 15135
This theorem is referenced by:  curfcl  15153
  Copyright terms: Public domain W3C validator