MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2 Structured version   Unicode version

Theorem curf2 15138
Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g  |-  G  =  ( <. C ,  D >. curryF  F
)
curf2.a  |-  A  =  ( Base `  C
)
curf2.c  |-  ( ph  ->  C  e.  Cat )
curf2.d  |-  ( ph  ->  D  e.  Cat )
curf2.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
curf2.b  |-  B  =  ( Base `  D
)
curf2.h  |-  H  =  ( Hom  `  C
)
curf2.i  |-  I  =  ( Id `  D
)
curf2.x  |-  ( ph  ->  X  e.  A )
curf2.y  |-  ( ph  ->  Y  e.  A )
curf2.k  |-  ( ph  ->  K  e.  ( X H Y ) )
curf2.l  |-  L  =  ( ( X ( 2nd `  G ) Y ) `  K
)
Assertion
Ref Expression
curf2  |-  ( ph  ->  L  =  ( z  e.  B  |->  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) )
Distinct variable groups:    z, C    z, F    z, H    z, L    z, E    z, G    z, I    ph, z    z, B   
z, D    z, X    z, K    z, Y
Allowed substitution hint:    A( z)

Proof of Theorem curf2
Dummy variables  x  y  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.l . 2  |-  L  =  ( ( X ( 2nd `  G ) Y ) `  K
)
2 curf2.g . . . . 5  |-  G  =  ( <. C ,  D >. curryF  F
)
3 curf2.a . . . . 5  |-  A  =  ( Base `  C
)
4 curf2.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
5 curf2.d . . . . 5  |-  ( ph  ->  D  e.  Cat )
6 curf2.f . . . . 5  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
7 curf2.b . . . . 5  |-  B  =  ( Base `  D
)
8 eqid 2451 . . . . 5  |-  ( Hom  `  D )  =  ( Hom  `  D )
9 eqid 2451 . . . . 5  |-  ( Id
`  C )  =  ( Id `  C
)
10 curf2.h . . . . 5  |-  H  =  ( Hom  `  C
)
11 curf2.i . . . . 5  |-  I  =  ( Id `  D
)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11curfval 15132 . . . 4  |-  ( ph  ->  G  =  <. (
x  e.  A  |->  <.
( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D )
z )  |->  ( ( ( Id `  C
) `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >. )
13 fvex 5796 . . . . . . 7  |-  ( Base `  C )  e.  _V
143, 13eqeltri 2533 . . . . . 6  |-  A  e. 
_V
1514mptex 6044 . . . . 5  |-  ( x  e.  A  |->  <. (
y  e.  B  |->  ( x ( 1st `  F
) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D ) z ) 
|->  ( ( ( Id
`  C ) `  x ) ( <.
x ,  y >.
( 2nd `  F
) <. x ,  z
>. ) g ) ) ) >. )  e.  _V
1614, 14mpt2ex 6747 . . . . 5  |-  ( x  e.  A ,  y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) ) )  e.  _V
1715, 16op2ndd 6685 . . . 4  |-  ( G  =  <. ( x  e.  A  |->  <. ( y  e.  B  |->  ( x ( 1st `  F ) y ) ) ,  ( y  e.  B ,  z  e.  B  |->  ( g  e.  ( y ( Hom  `  D
) z )  |->  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  z >.
) g ) ) ) >. ) ,  ( x  e.  A , 
y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) ) ) >.  ->  ( 2nd `  G )  =  ( x  e.  A ,  y  e.  A  |->  ( g  e.  ( x H y ) 
|->  ( z  e.  B  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) ) ) )
1812, 17syl 16 . . 3  |-  ( ph  ->  ( 2nd `  G
)  =  ( x  e.  A ,  y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) ) ) )
19 curf2.x . . . 4  |-  ( ph  ->  X  e.  A )
20 curf2.y . . . . 5  |-  ( ph  ->  Y  e.  A )
2120adantr 465 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  A )
22 ovex 6212 . . . . . 6  |-  ( x H y )  e. 
_V
2322mptex 6044 . . . . 5  |-  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) )  e.  _V
2423a1i 11 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( g  e.  ( x H y ) 
|->  ( z  e.  B  |->  ( g ( <.
x ,  z >.
( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) )  e.  _V )
25 curf2.k . . . . . . 7  |-  ( ph  ->  K  e.  ( X H Y ) )
2625adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  K  e.  ( X H Y ) )
27 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  x  =  X )
28 simprr 756 . . . . . . 7  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
y  =  Y )
2927, 28oveq12d 6205 . . . . . 6  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x H y )  =  ( X H Y ) )
3026, 29eleqtrrd 2540 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  ->  K  e.  ( x H y ) )
31 fvex 5796 . . . . . . . 8  |-  ( Base `  D )  e.  _V
327, 31eqeltri 2533 . . . . . . 7  |-  B  e. 
_V
3332mptex 6044 . . . . . 6  |-  ( z  e.  B  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) )  e.  _V
3433a1i 11 . . . . 5  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  (
z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) )  e.  _V )
35 simplrl 759 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  x  =  X )
3635opeq1d 4160 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  <. x ,  z >.  =  <. X ,  z >. )
37 simplrr 760 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  y  =  Y )
3837opeq1d 4160 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  <. y ,  z >.  =  <. Y ,  z >. )
3936, 38oveq12d 6205 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  ( <. x ,  z >.
( 2nd `  F
) <. y ,  z
>. )  =  ( <. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) )
40 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  g  =  K )
41 eqidd 2452 . . . . . . 7  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  (
I `  z )  =  ( I `  z ) )
4239, 40, 41oveq123d 6208 . . . . . 6  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  (
g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) )  =  ( K ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) ( I `  z ) ) )
4342mpteq2dv 4474 . . . . 5  |-  ( ( ( ph  /\  (
x  =  X  /\  y  =  Y )
)  /\  g  =  K )  ->  (
z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) )  =  ( z  e.  B  |->  ( K (
<. X ,  z >.
( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) )
4430, 34, 43fvmptdv2 5883 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( X ( 2nd `  G ) Y )  =  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z >. ( 2nd `  F ) <.
y ,  z >.
) ( I `  z ) ) ) )  ->  ( ( X ( 2nd `  G
) Y ) `  K )  =  ( z  e.  B  |->  ( K ( <. X , 
z >. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) ) )
4519, 21, 24, 44ovmpt2dv 6320 . . 3  |-  ( ph  ->  ( ( 2nd `  G
)  =  ( x  e.  A ,  y  e.  A  |->  ( g  e.  ( x H y )  |->  ( z  e.  B  |->  ( g ( <. x ,  z
>. ( 2nd `  F
) <. y ,  z
>. ) ( I `  z ) ) ) ) )  ->  (
( X ( 2nd `  G ) Y ) `
 K )  =  ( z  e.  B  |->  ( K ( <. X ,  z >. ( 2nd `  F )
<. Y ,  z >.
) ( I `  z ) ) ) ) )
4618, 45mpd 15 . 2  |-  ( ph  ->  ( ( X ( 2nd `  G ) Y ) `  K
)  =  ( z  e.  B  |->  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) )
471, 46syl5eq 2503 1  |-  ( ph  ->  L  =  ( z  e.  B  |->  ( K ( <. X ,  z
>. ( 2nd `  F
) <. Y ,  z
>. ) ( I `  z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3065   <.cop 3978    |-> cmpt 4445   ` cfv 5513  (class class class)co 6187    |-> cmpt2 6189   1stc1st 6672   2ndc2nd 6673   Basecbs 14273   Hom chom 14348   Catccat 14701   Idccid 14702    Func cfunc 14863    X.c cxpc 15077   curryF ccurf 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-1st 6674  df-2nd 6675  df-curf 15123
This theorem is referenced by:  curf2val  15139  curf2cl  15140  curfcl  15141  diag2  15154  curf2ndf  15156
  Copyright terms: Public domain W3C validator