MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic Structured version   Unicode version

Theorem cubic 22908
Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4083 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cubic.r  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
cubic.a  |-  ( ph  ->  A  e.  CC )
cubic.z  |-  ( ph  ->  A  =/=  0 )
cubic.b  |-  ( ph  ->  B  e.  CC )
cubic.c  |-  ( ph  ->  C  e.  CC )
cubic.d  |-  ( ph  ->  D  e.  CC )
cubic.x  |-  ( ph  ->  X  e.  CC )
cubic.t  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^c  ( 1  /  3 ) ) )
cubic.g  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
cubic.m  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
cubic.n  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
cubic.0  |-  ( ph  ->  M  =/=  0 )
Assertion
Ref Expression
cubic  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Distinct variable groups:    A, r    B, r    M, r    N, r    ph, r    T, r    X, r
Allowed substitution hints:    C( r)    D( r)    R( r)    G( r)

Proof of Theorem cubic
StepHypRef Expression
1 cubic.a . . 3  |-  ( ph  ->  A  e.  CC )
2 cubic.z . . 3  |-  ( ph  ->  A  =/=  0 )
3 cubic.b . . 3  |-  ( ph  ->  B  e.  CC )
4 cubic.c . . 3  |-  ( ph  ->  C  e.  CC )
5 cubic.d . . 3  |-  ( ph  ->  D  e.  CC )
6 cubic.x . . 3  |-  ( ph  ->  X  e.  CC )
7 cubic.t . . . 4  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^c  ( 1  /  3 ) ) )
8 cubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
9 2cn 10602 . . . . . . . . . . 11  |-  2  e.  CC
10 3nn0 10809 . . . . . . . . . . . 12  |-  3  e.  NN0
11 expcl 12148 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
123, 10, 11sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 3 )  e.  CC )
13 mulcl 9572 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( B ^ 3 )  e.  CC )  -> 
( 2  x.  ( B ^ 3 ) )  e.  CC )
149, 12, 13sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( B ^ 3 ) )  e.  CC )
15 9cn 10619 . . . . . . . . . . . 12  |-  9  e.  CC
16 mulcl 9572 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  A  e.  CC )  ->  ( 9  x.  A
)  e.  CC )
1715, 1, 16sylancr 663 . . . . . . . . . . 11  |-  ( ph  ->  ( 9  x.  A
)  e.  CC )
183, 4mulcld 9612 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  C
)  e.  CC )
1917, 18mulcld 9612 . . . . . . . . . 10  |-  ( ph  ->  ( ( 9  x.  A )  x.  ( B  x.  C )
)  e.  CC )
2014, 19subcld 9926 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( B ^ 3 ) )  -  (
( 9  x.  A
)  x.  ( B  x.  C ) ) )  e.  CC )
21 2nn0 10808 . . . . . . . . . . . 12  |-  2  e.  NN0
22 7nn 10694 . . . . . . . . . . . 12  |-  7  e.  NN
2321, 22decnncl 10985 . . . . . . . . . . 11  |- ; 2 7  e.  NN
2423nncni 10542 . . . . . . . . . 10  |- ; 2 7  e.  CC
251sqcld 12272 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
2625, 5mulcld 9612 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  x.  D
)  e.  CC )
27 mulcl 9572 . . . . . . . . . 10  |-  ( (; 2
7  e.  CC  /\  ( ( A ^
2 )  x.  D
)  e.  CC )  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
2824, 26, 27sylancr 663 . . . . . . . . 9  |-  ( ph  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
2920, 28addcld 9611 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( B ^
3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C )
) )  +  (; 2
7  x.  ( ( A ^ 2 )  x.  D ) ) )  e.  CC )
308, 29eqeltrd 2555 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
31 cubic.g . . . . . . . . 9  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
3230sqcld 12272 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
33 4cn 10609 . . . . . . . . . . 11  |-  4  e.  CC
34 cubic.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
353sqcld 12272 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
36 3cn 10606 . . . . . . . . . . . . . . 15  |-  3  e.  CC
371, 4mulcld 9612 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  x.  C
)  e.  CC )
38 mulcl 9572 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( A  x.  C
)  e.  CC )  ->  ( 3  x.  ( A  x.  C
) )  e.  CC )
3936, 37, 38sylancr 663 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  ( A  x.  C )
)  e.  CC )
4035, 39subcld 9926 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B ^
2 )  -  (
3  x.  ( A  x.  C ) ) )  e.  CC )
4134, 40eqeltrd 2555 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
42 expcl 12148 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
4341, 10, 42sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
44 mulcl 9572 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( 4  x.  ( M ^ 3 ) )  e.  CC )
4533, 43, 44sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  e.  CC )
4632, 45subcld 9926 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
4  x.  ( M ^ 3 ) ) )  e.  CC )
4731, 46eqeltrd 2555 . . . . . . . 8  |-  ( ph  ->  G  e.  CC )
4847sqrtcld 13227 . . . . . . 7  |-  ( ph  ->  ( sqr `  G
)  e.  CC )
4930, 48addcld 9611 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  e.  CC )
5049halfcld 10779 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC )
51 3ne0 10626 . . . . . 6  |-  3  =/=  0
5236, 51reccli 10270 . . . . 5  |-  ( 1  /  3 )  e.  CC
53 cxpcl 22783 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  (
1  /  3 )  e.  CC )  -> 
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) )  e.  CC )
5450, 52, 53sylancl 662 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) )  e.  CC )
557, 54eqeltrd 2555 . . 3  |-  ( ph  ->  T  e.  CC )
567oveq1d 6297 . . . 4  |-  ( ph  ->  ( T ^ 3 )  =  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^c  ( 1  /  3 ) ) ^ 3 ) )
57 3nn 10690 . . . . 5  |-  3  e.  NN
58 cxproot 22799 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  3  e.  NN )  ->  (
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) ) ^ 3 )  =  ( ( N  +  ( sqr `  G
) )  /  2
) )
5950, 57, 58sylancl 662 . . . 4  |-  ( ph  ->  ( ( ( ( N  +  ( sqr `  G ) )  / 
2 )  ^c 
( 1  /  3
) ) ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6056, 59eqtrd 2508 . . 3  |-  ( ph  ->  ( T ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6147sqsqrtd 13229 . . . 4  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  G )
6261, 31eqtrd 2508 . . 3  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
639a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  CC )
6433a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  e.  CC )
65 4ne0 10628 . . . . . . . . . 10  |-  4  =/=  0
6665a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  =/=  0 )
67 cubic.0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
68 3z 10893 . . . . . . . . . . 11  |-  3  e.  ZZ
6968a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  e.  ZZ )
7041, 67, 69expne0d 12280 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 3 )  =/=  0 )
7164, 43, 66, 70mulne0d 10197 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  =/=  0 )
7262oveq2d 6298 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N ^ 2 )  -  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) ) )
73 subsq 12239 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  ( sqr `  G )  e.  CC )  -> 
( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7430, 48, 73syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7532, 45nncand 9931 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( N ^ 2 )  -  ( 4  x.  ( M ^
3 ) ) ) )  =  ( 4  x.  ( M ^
3 ) ) )
7672, 74, 753eqtr3d 2516 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =  ( 4  x.  ( M ^ 3 ) ) )
7730, 48subcld 9926 . . . . . . . . 9  |-  ( ph  ->  ( N  -  ( sqr `  G ) )  e.  CC )
7877mul02d 9773 . . . . . . . 8  |-  ( ph  ->  ( 0  x.  ( N  -  ( sqr `  G ) ) )  =  0 )
7971, 76, 783netr4d 2772 . . . . . . 7  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
80 oveq1 6289 . . . . . . . 8  |-  ( ( N  +  ( sqr `  G ) )  =  0  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) )  =  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
8180necon3i 2707 . . . . . . 7  |-  ( ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) )  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
8279, 81syl 16 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
83 2ne0 10624 . . . . . . 7  |-  2  =/=  0
8483a1i 11 . . . . . 6  |-  ( ph  ->  2  =/=  0 )
8549, 63, 82, 84divne0d 10332 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  =/=  0 )
8652a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  3
)  e.  CC )
8750, 85, 86cxpne0d 22822 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^c  ( 1  /  3 ) )  =/=  0 )
887, 87eqnetrd 2760 . . 3  |-  ( ph  ->  T  =/=  0 )
891, 2, 3, 4, 5, 6, 55, 60, 48, 62, 34, 8, 88cubic2 22907 . 2  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  CC  (
( r ^ 3 )  =  1  /\  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) ) )
90 cubic.r . . . . . 6  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
91901cubr 22901 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  CC  /\  ( r ^ 3 )  =  1 ) )
9291anbi1i 695 . . . 4  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
93 anass 649 . . . 4  |-  ( ( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) )  <->  ( r  e.  CC  /\  ( ( r ^ 3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) ) )
9492, 93bitri 249 . . 3  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( r  e.  CC  /\  ( ( r ^
3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) ) ) )
9594rexbii2 2963 . 2  |-  ( E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) )  <->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  = 
-u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
9689, 95syl6bbr 263 1  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815   {ctp 4031   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489   _ici 9490    + caddc 9491    x. cmul 9493    - cmin 9801   -ucneg 9802    / cdiv 10202   NNcn 10532   2c2 10581   3c3 10582   4c4 10583   7c7 10586   9c9 10588   NN0cn0 10791   ZZcz 10860  ;cdc 10972   ^cexp 12130   sqrcsqrt 13025    ^c ccxp 22671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672  df-cxp 22673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator