MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic Unicode version

Theorem cubic 20642
Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 3824 to convert the existential quantifier to a triple disjunction. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cubic.r  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
cubic.a  |-  ( ph  ->  A  e.  CC )
cubic.z  |-  ( ph  ->  A  =/=  0 )
cubic.b  |-  ( ph  ->  B  e.  CC )
cubic.c  |-  ( ph  ->  C  e.  CC )
cubic.d  |-  ( ph  ->  D  e.  CC )
cubic.x  |-  ( ph  ->  X  e.  CC )
cubic.t  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^ c  ( 1  /  3 ) ) )
cubic.g  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
cubic.m  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
cubic.n  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
cubic.0  |-  ( ph  ->  M  =/=  0 )
Assertion
Ref Expression
cubic  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Distinct variable groups:    A, r    B, r    M, r    N, r    ph, r    T, r    X, r
Allowed substitution hints:    C( r)    D( r)    R( r)    G( r)

Proof of Theorem cubic
StepHypRef Expression
1 cubic.a . . 3  |-  ( ph  ->  A  e.  CC )
2 cubic.z . . 3  |-  ( ph  ->  A  =/=  0 )
3 cubic.b . . 3  |-  ( ph  ->  B  e.  CC )
4 cubic.c . . 3  |-  ( ph  ->  C  e.  CC )
5 cubic.d . . 3  |-  ( ph  ->  D  e.  CC )
6 cubic.x . . 3  |-  ( ph  ->  X  e.  CC )
7 cubic.t . . . 4  |-  ( ph  ->  T  =  ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^ c  ( 1  /  3 ) ) )
8 cubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( ( ( 2  x.  ( B ^ 3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C
) ) )  +  (; 2 7  x.  (
( A ^ 2 )  x.  D ) ) ) )
9 2cn 10026 . . . . . . . . . . 11  |-  2  e.  CC
10 3nn0 10195 . . . . . . . . . . . 12  |-  3  e.  NN0
11 expcl 11354 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
123, 10, 11sylancl 644 . . . . . . . . . . 11  |-  ( ph  ->  ( B ^ 3 )  e.  CC )
13 mulcl 9030 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  ( B ^ 3 )  e.  CC )  -> 
( 2  x.  ( B ^ 3 ) )  e.  CC )
149, 12, 13sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  ( B ^ 3 ) )  e.  CC )
15 9nn 10096 . . . . . . . . . . . . 13  |-  9  e.  NN
1615nncni 9966 . . . . . . . . . . . 12  |-  9  e.  CC
17 mulcl 9030 . . . . . . . . . . . 12  |-  ( ( 9  e.  CC  /\  A  e.  CC )  ->  ( 9  x.  A
)  e.  CC )
1816, 1, 17sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( 9  x.  A
)  e.  CC )
193, 4mulcld 9064 . . . . . . . . . . 11  |-  ( ph  ->  ( B  x.  C
)  e.  CC )
2018, 19mulcld 9064 . . . . . . . . . 10  |-  ( ph  ->  ( ( 9  x.  A )  x.  ( B  x.  C )
)  e.  CC )
2114, 20subcld 9367 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( B ^ 3 ) )  -  (
( 9  x.  A
)  x.  ( B  x.  C ) ) )  e.  CC )
22 2nn0 10194 . . . . . . . . . . . 12  |-  2  e.  NN0
23 7nn 10094 . . . . . . . . . . . 12  |-  7  e.  NN
2422, 23decnncl 10351 . . . . . . . . . . 11  |- ; 2 7  e.  NN
2524nncni 9966 . . . . . . . . . 10  |- ; 2 7  e.  CC
261sqcld 11476 . . . . . . . . . . 11  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
2726, 5mulcld 9064 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  x.  D
)  e.  CC )
28 mulcl 9030 . . . . . . . . . 10  |-  ( (; 2
7  e.  CC  /\  ( ( A ^
2 )  x.  D
)  e.  CC )  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
2925, 27, 28sylancr 645 . . . . . . . . 9  |-  ( ph  ->  (; 2 7  x.  (
( A ^ 2 )  x.  D ) )  e.  CC )
3021, 29addcld 9063 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  ( B ^
3 ) )  -  ( ( 9  x.  A )  x.  ( B  x.  C )
) )  +  (; 2
7  x.  ( ( A ^ 2 )  x.  D ) ) )  e.  CC )
318, 30eqeltrd 2478 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
32 cubic.g . . . . . . . . 9  |-  ( ph  ->  G  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
3331sqcld 11476 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
34 4cn 10030 . . . . . . . . . . 11  |-  4  e.  CC
35 cubic.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  =  ( ( B ^ 2 )  -  ( 3  x.  ( A  x.  C
) ) ) )
363sqcld 11476 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
37 3cn 10028 . . . . . . . . . . . . . . 15  |-  3  e.  CC
381, 4mulcld 9064 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  x.  C
)  e.  CC )
39 mulcl 9030 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( A  x.  C
)  e.  CC )  ->  ( 3  x.  ( A  x.  C
) )  e.  CC )
4037, 38, 39sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  ( A  x.  C )
)  e.  CC )
4136, 40subcld 9367 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B ^
2 )  -  (
3  x.  ( A  x.  C ) ) )  e.  CC )
4235, 41eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  CC )
43 expcl 11354 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
4442, 10, 43sylancl 644 . . . . . . . . . . 11  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
45 mulcl 9030 . . . . . . . . . . 11  |-  ( ( 4  e.  CC  /\  ( M ^ 3 )  e.  CC )  -> 
( 4  x.  ( M ^ 3 ) )  e.  CC )
4634, 44, 45sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  e.  CC )
4733, 46subcld 9367 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
4  x.  ( M ^ 3 ) ) )  e.  CC )
4832, 47eqeltrd 2478 . . . . . . . 8  |-  ( ph  ->  G  e.  CC )
4948sqrcld 12194 . . . . . . 7  |-  ( ph  ->  ( sqr `  G
)  e.  CC )
5031, 49addcld 9063 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  e.  CC )
5150halfcld 10168 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC )
52 3ne0 10041 . . . . . 6  |-  3  =/=  0
5337, 52reccli 9700 . . . . 5  |-  ( 1  /  3 )  e.  CC
54 cxpcl 20518 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  (
1  /  3 )  e.  CC )  -> 
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) )  e.  CC )
5551, 53, 54sylancl 644 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) )  e.  CC )
567, 55eqeltrd 2478 . . 3  |-  ( ph  ->  T  e.  CC )
577oveq1d 6055 . . . 4  |-  ( ph  ->  ( T ^ 3 )  =  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  ^ c  ( 1  /  3 ) ) ^ 3 ) )
58 3nn 10090 . . . . 5  |-  3  e.  NN
59 cxproot 20534 . . . . 5  |-  ( ( ( ( N  +  ( sqr `  G ) )  /  2 )  e.  CC  /\  3  e.  NN )  ->  (
( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) ) ^ 3 )  =  ( ( N  +  ( sqr `  G
) )  /  2
) )
6051, 58, 59sylancl 644 . . . 4  |-  ( ph  ->  ( ( ( ( N  +  ( sqr `  G ) )  / 
2 )  ^ c 
( 1  /  3
) ) ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6157, 60eqtrd 2436 . . 3  |-  ( ph  ->  ( T ^ 3 )  =  ( ( N  +  ( sqr `  G ) )  / 
2 ) )
6248sqsqrd 12196 . . . 4  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  G )
6362, 32eqtrd 2436 . . 3  |-  ( ph  ->  ( ( sqr `  G
) ^ 2 )  =  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) )
649a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  CC )
6534a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  e.  CC )
66 4nn 10091 . . . . . . . . . . 11  |-  4  e.  NN
6766nnne0i 9990 . . . . . . . . . 10  |-  4  =/=  0
6867a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  =/=  0 )
69 cubic.0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
7010nn0zi 10262 . . . . . . . . . . 11  |-  3  e.  ZZ
7170a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  e.  ZZ )
7242, 69, 71expne0d 11484 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 3 )  =/=  0 )
7365, 44, 68, 72mulne0d 9630 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  ( M ^ 3 ) )  =/=  0 )
7463oveq2d 6056 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N ^ 2 )  -  ( ( N ^ 2 )  -  ( 4  x.  ( M ^ 3 ) ) ) ) )
75 subsq 11443 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  ( sqr `  G )  e.  CC )  -> 
( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7631, 49, 75syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( sqr `  G
) ^ 2 ) )  =  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) ) )
7733, 46nncand 9372 . . . . . . . . 9  |-  ( ph  ->  ( ( N ^
2 )  -  (
( N ^ 2 )  -  ( 4  x.  ( M ^
3 ) ) ) )  =  ( 4  x.  ( M ^
3 ) ) )
7874, 76, 773eqtr3d 2444 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =  ( 4  x.  ( M ^ 3 ) ) )
7931, 49subcld 9367 . . . . . . . . 9  |-  ( ph  ->  ( N  -  ( sqr `  G ) )  e.  CC )
8079mul02d 9220 . . . . . . . 8  |-  ( ph  ->  ( 0  x.  ( N  -  ( sqr `  G ) ) )  =  0 )
8173, 78, 803netr4d 2594 . . . . . . 7  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
82 oveq1 6047 . . . . . . . 8  |-  ( ( N  +  ( sqr `  G ) )  =  0  ->  ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G ) ) )  =  ( 0  x.  ( N  -  ( sqr `  G ) ) ) )
8382necon3i 2606 . . . . . . 7  |-  ( ( ( N  +  ( sqr `  G ) )  x.  ( N  -  ( sqr `  G
) ) )  =/=  ( 0  x.  ( N  -  ( sqr `  G ) ) )  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
8481, 83syl 16 . . . . . 6  |-  ( ph  ->  ( N  +  ( sqr `  G ) )  =/=  0 )
85 2ne0 10039 . . . . . . 7  |-  2  =/=  0
8685a1i 11 . . . . . 6  |-  ( ph  ->  2  =/=  0 )
8750, 64, 84, 86divne0d 9762 . . . . 5  |-  ( ph  ->  ( ( N  +  ( sqr `  G ) )  /  2 )  =/=  0 )
8853a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  3
)  e.  CC )
8951, 87, 88cxpne0d 20557 . . . 4  |-  ( ph  ->  ( ( ( N  +  ( sqr `  G
) )  /  2
)  ^ c  ( 1  /  3 ) )  =/=  0 )
907, 89eqnetrd 2585 . . 3  |-  ( ph  ->  T  =/=  0 )
911, 2, 3, 4, 5, 6, 56, 61, 49, 63, 35, 8, 90cubic2 20641 . 2  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  CC  (
( r ^ 3 )  =  1  /\  X  =  -u (
( ( B  +  ( r  x.  T
) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) ) ) )
92 cubic.r . . . . . 6  |-  R  =  { 1 ,  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 ) ,  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) }
93921cubr 20635 . . . . 5  |-  ( r  e.  R  <->  ( r  e.  CC  /\  ( r ^ 3 )  =  1 ) )
9493anbi1i 677 . . . 4  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
95 anass 631 . . . 4  |-  ( ( ( r  e.  CC  /\  ( r ^ 3 )  =  1 )  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) )  <->  ( r  e.  CC  /\  ( ( r ^ 3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) ) )
9694, 95bitri 241 . . 3  |-  ( ( r  e.  R  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  ( r  x.  T ) ) )  /  ( 3  x.  A ) ) )  <-> 
( r  e.  CC  /\  ( ( r ^
3 )  =  1  /\  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  /  (
r  x.  T ) ) )  /  (
3  x.  A ) ) ) ) )
9796rexbii2 2695 . 2  |-  ( E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) )  <->  E. r  e.  CC  ( ( r ^ 3 )  =  1  /\  X  = 
-u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
9891, 97syl6bbr 255 1  |-  ( ph  ->  ( ( ( ( A  x.  ( X ^ 3 ) )  +  ( B  x.  ( X ^ 2 ) ) )  +  ( ( C  x.  X
)  +  D ) )  =  0  <->  E. r  e.  R  X  =  -u ( ( ( B  +  ( r  x.  T ) )  +  ( M  / 
( r  x.  T
) ) )  / 
( 3  x.  A
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667   {ctp 3776   ` cfv 5413  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947   _ici 8948    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   4c4 10007   7c7 10010   9c9 10012   NN0cn0 10177   ZZcz 10238  ;cdc 10338   ^cexp 11337   sqrcsqr 11993    ^ c ccxp 20406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408
  Copyright terms: Public domain W3C validator