MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssval Structured version   Unicode version

Theorem cssval 18007
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o  |-  ._|_  =  ( ocv `  W )
cssval.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
cssval  |-  ( W  e.  X  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
Distinct variable groups:    ._|_ , s    W, s
Allowed substitution hints:    C( s)    X( s)

Proof of Theorem cssval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2979 . 2  |-  ( W  e.  X  ->  W  e.  _V )
2 cssval.c . . 3  |-  C  =  ( CSubSp `  W )
3 fveq2 5688 . . . . . . . 8  |-  ( w  =  W  ->  ( ocv `  w )  =  ( ocv `  W
) )
4 cssval.o . . . . . . . 8  |-  ._|_  =  ( ocv `  W )
53, 4syl6eqr 2491 . . . . . . 7  |-  ( w  =  W  ->  ( ocv `  w )  = 
._|_  )
65fveq1d 5690 . . . . . . 7  |-  ( w  =  W  ->  (
( ocv `  w
) `  s )  =  (  ._|_  `  s
) )
75, 6fveq12d 5694 . . . . . 6  |-  ( w  =  W  ->  (
( ocv `  w
) `  ( ( ocv `  w ) `  s ) )  =  (  ._|_  `  (  ._|_  `  s ) ) )
87eqeq2d 2452 . . . . 5  |-  ( w  =  W  ->  (
s  =  ( ( ocv `  w ) `
 ( ( ocv `  w ) `  s
) )  <->  s  =  (  ._|_  `  (  ._|_  `  s ) ) ) )
98abbidv 2555 . . . 4  |-  ( w  =  W  ->  { s  |  s  =  ( ( ocv `  w
) `  ( ( ocv `  w ) `  s ) ) }  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
10 df-css 17989 . . . 4  |-  CSubSp  =  ( w  e.  _V  |->  { s  |  s  =  ( ( ocv `  w
) `  ( ( ocv `  w ) `  s ) ) } )
11 fvex 5698 . . . . . 6  |-  ( Base `  W )  e.  _V
1211pwex 4472 . . . . 5  |-  ~P ( Base `  W )  e. 
_V
13 id 22 . . . . . . 7  |-  ( s  =  (  ._|_  `  (  ._|_  `  s ) )  ->  s  =  ( 
._|_  `  (  ._|_  `  s
) ) )
14 eqid 2441 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
1514, 4ocvss 17995 . . . . . . . 8  |-  (  ._|_  `  (  ._|_  `  s ) )  C_  ( Base `  W )
16 fvex 5698 . . . . . . . . 9  |-  (  ._|_  `  (  ._|_  `  s ) )  e.  _V
1716elpw 3863 . . . . . . . 8  |-  ( ( 
._|_  `  (  ._|_  `  s
) )  e.  ~P ( Base `  W )  <->  ( 
._|_  `  (  ._|_  `  s
) )  C_  ( Base `  W ) )
1815, 17mpbir 209 . . . . . . 7  |-  (  ._|_  `  (  ._|_  `  s ) )  e.  ~P ( Base `  W )
1913, 18syl6eqel 2529 . . . . . 6  |-  ( s  =  (  ._|_  `  (  ._|_  `  s ) )  ->  s  e.  ~P ( Base `  W )
)
2019abssi 3424 . . . . 5  |-  { s  |  s  =  ( 
._|_  `  (  ._|_  `  s
) ) }  C_  ~P ( Base `  W
)
2112, 20ssexi 4434 . . . 4  |-  { s  |  s  =  ( 
._|_  `  (  ._|_  `  s
) ) }  e.  _V
229, 10, 21fvmpt 5771 . . 3  |-  ( W  e.  _V  ->  ( CSubSp `
 W )  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
232, 22syl5eq 2485 . 2  |-  ( W  e.  _V  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
241, 23syl 16 1  |-  ( W  e.  X  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 1761   {cab 2427   _Vcvv 2970    C_ wss 3325   ~Pcpw 3857   ` cfv 5415   Basecbs 14170   ocvcocv 17985   CSubSpccss 17986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-ov 6093  df-ocv 17988  df-css 17989
This theorem is referenced by:  iscss  18008
  Copyright terms: Public domain W3C validator