MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssval Structured version   Unicode version

Theorem cssval 18107
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o  |-  ._|_  =  ( ocv `  W )
cssval.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
cssval  |-  ( W  e.  X  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
Distinct variable groups:    ._|_ , s    W, s
Allowed substitution hints:    C( s)    X( s)

Proof of Theorem cssval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2981 . 2  |-  ( W  e.  X  ->  W  e.  _V )
2 cssval.c . . 3  |-  C  =  ( CSubSp `  W )
3 fveq2 5691 . . . . . . . 8  |-  ( w  =  W  ->  ( ocv `  w )  =  ( ocv `  W
) )
4 cssval.o . . . . . . . 8  |-  ._|_  =  ( ocv `  W )
53, 4syl6eqr 2493 . . . . . . 7  |-  ( w  =  W  ->  ( ocv `  w )  = 
._|_  )
65fveq1d 5693 . . . . . . 7  |-  ( w  =  W  ->  (
( ocv `  w
) `  s )  =  (  ._|_  `  s
) )
75, 6fveq12d 5697 . . . . . 6  |-  ( w  =  W  ->  (
( ocv `  w
) `  ( ( ocv `  w ) `  s ) )  =  (  ._|_  `  (  ._|_  `  s ) ) )
87eqeq2d 2454 . . . . 5  |-  ( w  =  W  ->  (
s  =  ( ( ocv `  w ) `
 ( ( ocv `  w ) `  s
) )  <->  s  =  (  ._|_  `  (  ._|_  `  s ) ) ) )
98abbidv 2557 . . . 4  |-  ( w  =  W  ->  { s  |  s  =  ( ( ocv `  w
) `  ( ( ocv `  w ) `  s ) ) }  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
10 df-css 18089 . . . 4  |-  CSubSp  =  ( w  e.  _V  |->  { s  |  s  =  ( ( ocv `  w
) `  ( ( ocv `  w ) `  s ) ) } )
11 fvex 5701 . . . . . 6  |-  ( Base `  W )  e.  _V
1211pwex 4475 . . . . 5  |-  ~P ( Base `  W )  e. 
_V
13 id 22 . . . . . . 7  |-  ( s  =  (  ._|_  `  (  ._|_  `  s ) )  ->  s  =  ( 
._|_  `  (  ._|_  `  s
) ) )
14 eqid 2443 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
1514, 4ocvss 18095 . . . . . . . 8  |-  (  ._|_  `  (  ._|_  `  s ) )  C_  ( Base `  W )
16 fvex 5701 . . . . . . . . 9  |-  (  ._|_  `  (  ._|_  `  s ) )  e.  _V
1716elpw 3866 . . . . . . . 8  |-  ( ( 
._|_  `  (  ._|_  `  s
) )  e.  ~P ( Base `  W )  <->  ( 
._|_  `  (  ._|_  `  s
) )  C_  ( Base `  W ) )
1815, 17mpbir 209 . . . . . . 7  |-  (  ._|_  `  (  ._|_  `  s ) )  e.  ~P ( Base `  W )
1913, 18syl6eqel 2531 . . . . . 6  |-  ( s  =  (  ._|_  `  (  ._|_  `  s ) )  ->  s  e.  ~P ( Base `  W )
)
2019abssi 3427 . . . . 5  |-  { s  |  s  =  ( 
._|_  `  (  ._|_  `  s
) ) }  C_  ~P ( Base `  W
)
2112, 20ssexi 4437 . . . 4  |-  { s  |  s  =  ( 
._|_  `  (  ._|_  `  s
) ) }  e.  _V
229, 10, 21fvmpt 5774 . . 3  |-  ( W  e.  _V  ->  ( CSubSp `
 W )  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
232, 22syl5eq 2487 . 2  |-  ( W  e.  _V  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
241, 23syl 16 1  |-  ( W  e.  X  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   {cab 2429   _Vcvv 2972    C_ wss 3328   ~Pcpw 3860   ` cfv 5418   Basecbs 14174   ocvcocv 18085   CSubSpccss 18086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426  df-ov 6094  df-ocv 18088  df-css 18089
This theorem is referenced by:  iscss  18108
  Copyright terms: Public domain W3C validator