MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssval Structured version   Unicode version

Theorem cssval 19176
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssval.o  |-  ._|_  =  ( ocv `  W )
cssval.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
cssval  |-  ( W  e.  X  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
Distinct variable groups:    ._|_ , s    W, s
Allowed substitution hints:    C( s)    X( s)

Proof of Theorem cssval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 3096 . 2  |-  ( W  e.  X  ->  W  e.  _V )
2 cssval.c . . 3  |-  C  =  ( CSubSp `  W )
3 fveq2 5881 . . . . . . . 8  |-  ( w  =  W  ->  ( ocv `  w )  =  ( ocv `  W
) )
4 cssval.o . . . . . . . 8  |-  ._|_  =  ( ocv `  W )
53, 4syl6eqr 2488 . . . . . . 7  |-  ( w  =  W  ->  ( ocv `  w )  = 
._|_  )
65fveq1d 5883 . . . . . . 7  |-  ( w  =  W  ->  (
( ocv `  w
) `  s )  =  (  ._|_  `  s
) )
75, 6fveq12d 5887 . . . . . 6  |-  ( w  =  W  ->  (
( ocv `  w
) `  ( ( ocv `  w ) `  s ) )  =  (  ._|_  `  (  ._|_  `  s ) ) )
87eqeq2d 2443 . . . . 5  |-  ( w  =  W  ->  (
s  =  ( ( ocv `  w ) `
 ( ( ocv `  w ) `  s
) )  <->  s  =  (  ._|_  `  (  ._|_  `  s ) ) ) )
98abbidv 2565 . . . 4  |-  ( w  =  W  ->  { s  |  s  =  ( ( ocv `  w
) `  ( ( ocv `  w ) `  s ) ) }  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
10 df-css 19158 . . . 4  |-  CSubSp  =  ( w  e.  _V  |->  { s  |  s  =  ( ( ocv `  w
) `  ( ( ocv `  w ) `  s ) ) } )
11 fvex 5891 . . . . . 6  |-  ( Base `  W )  e.  _V
1211pwex 4608 . . . . 5  |-  ~P ( Base `  W )  e. 
_V
13 id 23 . . . . . . 7  |-  ( s  =  (  ._|_  `  (  ._|_  `  s ) )  ->  s  =  ( 
._|_  `  (  ._|_  `  s
) ) )
14 eqid 2429 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
1514, 4ocvss 19164 . . . . . . . 8  |-  (  ._|_  `  (  ._|_  `  s ) )  C_  ( Base `  W )
16 fvex 5891 . . . . . . . . 9  |-  (  ._|_  `  (  ._|_  `  s ) )  e.  _V
1716elpw 3991 . . . . . . . 8  |-  ( ( 
._|_  `  (  ._|_  `  s
) )  e.  ~P ( Base `  W )  <->  ( 
._|_  `  (  ._|_  `  s
) )  C_  ( Base `  W ) )
1815, 17mpbir 212 . . . . . . 7  |-  (  ._|_  `  (  ._|_  `  s ) )  e.  ~P ( Base `  W )
1913, 18syl6eqel 2525 . . . . . 6  |-  ( s  =  (  ._|_  `  (  ._|_  `  s ) )  ->  s  e.  ~P ( Base `  W )
)
2019abssi 3542 . . . . 5  |-  { s  |  s  =  ( 
._|_  `  (  ._|_  `  s
) ) }  C_  ~P ( Base `  W
)
2112, 20ssexi 4570 . . . 4  |-  { s  |  s  =  ( 
._|_  `  (  ._|_  `  s
) ) }  e.  _V
229, 10, 21fvmpt 5964 . . 3  |-  ( W  e.  _V  ->  ( CSubSp `
 W )  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
232, 22syl5eq 2482 . 2  |-  ( W  e.  _V  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
241, 23syl 17 1  |-  ( W  e.  X  ->  C  =  { s  |  s  =  (  ._|_  `  (  ._|_  `  s ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1870   {cab 2414   _Vcvv 3087    C_ wss 3442   ~Pcpw 3985   ` cfv 5601   Basecbs 15084   ocvcocv 19154   CSubSpccss 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-ocv 19157  df-css 19158
This theorem is referenced by:  iscss  19177
  Copyright terms: Public domain W3C validator