MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssmre Structured version   Unicode version

Theorem cssmre 18244
Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one is not usually an algebraic closure system df-acs 14647: consider the Hilbert space of sequences  NN --> RR with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel 14712. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
cssmre.v  |-  V  =  ( Base `  W
)
cssmre.c  |-  C  =  ( CSubSp `  W )
Assertion
Ref Expression
cssmre  |-  ( W  e.  PreHil  ->  C  e.  (Moore `  V ) )

Proof of Theorem cssmre
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cssmre.v . . . . . 6  |-  V  =  ( Base `  W
)
2 cssmre.c . . . . . 6  |-  C  =  ( CSubSp `  W )
31, 2cssss 18236 . . . . 5  |-  ( x  e.  C  ->  x  C_  V )
4 selpw 3976 . . . . 5  |-  ( x  e.  ~P V  <->  x  C_  V
)
53, 4sylibr 212 . . . 4  |-  ( x  e.  C  ->  x  e.  ~P V )
65a1i 11 . . 3  |-  ( W  e.  PreHil  ->  ( x  e.  C  ->  x  e.  ~P V ) )
76ssrdv 3471 . 2  |-  ( W  e.  PreHil  ->  C  C_  ~P V )
81, 2css1 18241 . 2  |-  ( W  e.  PreHil  ->  V  e.  C
)
9 intss1 4252 . . . . . . . . . . . 12  |-  ( z  e.  x  ->  |^| x  C_  z )
10 eqid 2454 . . . . . . . . . . . . 13  |-  ( ocv `  W )  =  ( ocv `  W )
1110ocv2ss 18224 . . . . . . . . . . . 12  |-  ( |^| x  C_  z  ->  (
( ocv `  W
) `  z )  C_  ( ( ocv `  W
) `  |^| x ) )
1210ocv2ss 18224 . . . . . . . . . . . 12  |-  ( ( ( ocv `  W
) `  z )  C_  ( ( ocv `  W
) `  |^| x )  ->  ( ( ocv `  W ) `  (
( ocv `  W
) `  |^| x ) )  C_  ( ( ocv `  W ) `  ( ( ocv `  W
) `  z )
) )
139, 11, 123syl 20 . . . . . . . . . . 11  |-  ( z  e.  x  ->  (
( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) )  C_  ( ( ocv `  W
) `  ( ( ocv `  W ) `  z ) ) )
1413ad2antll 728 . . . . . . . . . 10  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  |^| x ) )  C_  ( ( ocv `  W ) `  ( ( ocv `  W
) `  z )
) )
15 simprl 755 . . . . . . . . . 10  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )
1614, 15sseldd 3466 . . . . . . . . 9  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  z ) ) )
17 simpl2 992 . . . . . . . . . . 11  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  x  C_  C
)
18 simprr 756 . . . . . . . . . . 11  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  z  e.  x )
1917, 18sseldd 3466 . . . . . . . . . 10  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  z  e.  C )
2010, 2cssi 18235 . . . . . . . . . 10  |-  ( z  e.  C  ->  z  =  ( ( ocv `  W ) `  (
( ocv `  W
) `  z )
) )
2119, 20syl 16 . . . . . . . . 9  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  z  =  ( ( ocv `  W
) `  ( ( ocv `  W ) `  z ) ) )
2216, 21eleqtrrd 2545 . . . . . . . 8  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  (
y  e.  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  /\  z  e.  x )
)  ->  y  e.  z )
2322expr 615 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )  ->  ( z  e.  x  ->  y  e.  z ) )
2423alrimiv 1686 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )  ->  A. z ( z  e.  x  ->  y  e.  z ) )
25 vex 3081 . . . . . . 7  |-  y  e. 
_V
2625elint 4243 . . . . . 6  |-  ( y  e.  |^| x  <->  A. z
( z  e.  x  ->  y  e.  z ) )
2724, 26sylibr 212 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  /\  y  e.  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) ) )  ->  y  e.  |^| x )
2827ex 434 . . . 4  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( y  e.  ( ( ocv `  W ) `  (
( ocv `  W
) `  |^| x ) )  ->  y  e.  |^| x ) )
2928ssrdv 3471 . . 3  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( ( ocv `  W ) `
 ( ( ocv `  W ) `  |^| x ) )  C_  |^| x )
30 simp1 988 . . . 4  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  W  e. 
PreHil )
31 intssuni 4259 . . . . . 6  |-  ( x  =/=  (/)  ->  |^| x  C_  U. x )
32313ad2ant3 1011 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  C_ 
U. x )
33 simp2 989 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  x  C_  C )
3473ad2ant1 1009 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  C  C_  ~P V )
3533, 34sstrd 3475 . . . . . 6  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  x  C_  ~P V )
36 sspwuni 4365 . . . . . 6  |-  ( x 
C_  ~P V  <->  U. x  C_  V )
3735, 36sylib 196 . . . . 5  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  U. x  C_  V )
3832, 37sstrd 3475 . . . 4  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  C_  V )
391, 2, 10iscss2 18237 . . . 4  |-  ( ( W  e.  PreHil  /\  |^| x  C_  V )  -> 
( |^| x  e.  C  <->  ( ( ocv `  W
) `  ( ( ocv `  W ) `  |^| x ) )  C_  |^| x ) )
4030, 38, 39syl2anc 661 . . 3  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  ( |^| x  e.  C  <->  ( ( ocv `  W ) `  ( ( ocv `  W
) `  |^| x ) )  C_  |^| x ) )
4129, 40mpbird 232 . 2  |-  ( ( W  e.  PreHil  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  e.  C )
427, 8, 41ismred 14660 1  |-  ( W  e.  PreHil  ->  C  e.  (Moore `  V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370    e. wcel 1758    =/= wne 2648    C_ wss 3437   (/)c0 3746   ~Pcpw 3969   U.cuni 4200   |^|cint 4237   ` cfv 5527   Basecbs 14293  Moorecmre 14640   PreHilcphl 18179   ocvcocv 18211   CSubSpccss 18212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-tpos 6856  df-recs 6943  df-rdg 6977  df-er 7212  df-map 7327  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-2 10492  df-3 10493  df-4 10494  df-5 10495  df-6 10496  df-7 10497  df-8 10498  df-ndx 14296  df-slot 14297  df-base 14298  df-sets 14299  df-plusg 14371  df-mulr 14372  df-sca 14374  df-vsca 14375  df-ip 14376  df-0g 14500  df-mre 14644  df-mnd 15535  df-mhm 15584  df-grp 15665  df-ghm 15865  df-mgp 16715  df-ur 16727  df-rng 16771  df-oppr 16839  df-rnghom 16930  df-staf 17054  df-srng 17055  df-lmod 17074  df-lmhm 17227  df-lvec 17308  df-sra 17377  df-rgmod 17378  df-phl 18181  df-ocv 18214  df-css 18215
This theorem is referenced by:  mrccss  18245
  Copyright terms: Public domain W3C validator