HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  csmdsymi Structured version   Unicode version

Theorem csmdsymi 26945
Description: Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
csmdsym.1  |-  A  e. 
CH
csmdsym.2  |-  B  e. 
CH
Assertion
Ref Expression
csmdsymi  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  B  MH  A )
Distinct variable group:    B, c
Allowed substitution hint:    A( c)

Proof of Theorem csmdsymi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 incom 3691 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
21sseq1i 3528 . . . . 5  |-  ( ( A  i^i  B ) 
C_  x  <->  ( B  i^i  A )  C_  x
)
32biimpri 206 . . . 4  |-  ( ( B  i^i  A ) 
C_  x  ->  ( A  i^i  B )  C_  x )
4 csmdsym.2 . . . . . . . . . 10  |-  B  e. 
CH
5 chjcom 26116 . . . . . . . . . 10  |-  ( ( x  e.  CH  /\  B  e.  CH )  ->  ( x  vH  B
)  =  ( B  vH  x ) )
64, 5mpan2 671 . . . . . . . . 9  |-  ( x  e.  CH  ->  (
x  vH  B )  =  ( B  vH  x ) )
76ineq1d 3699 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  =  ( ( B  vH  x )  i^i 
A ) )
8 incom 3691 . . . . . . . 8  |-  ( ( B  vH  x )  i^i  A )  =  ( A  i^i  ( B  vH  x ) )
97, 8syl6eq 2524 . . . . . . 7  |-  ( x  e.  CH  ->  (
( x  vH  B
)  i^i  A )  =  ( A  i^i  ( B  vH  x
) ) )
109ad2antlr 726 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( x  vH  B )  i^i 
A )  =  ( A  i^i  ( B  vH  x ) ) )
114a1i 11 . . . . . . . . 9  |-  ( x  e.  CH  ->  B  e.  CH )
12 id 22 . . . . . . . . 9  |-  ( x  e.  CH  ->  x  e.  CH )
13 csmdsym.1 . . . . . . . . . 10  |-  A  e. 
CH
1413a1i 11 . . . . . . . . 9  |-  ( x  e.  CH  ->  A  e.  CH )
1511, 12, 143jca 1176 . . . . . . . 8  |-  ( x  e.  CH  ->  ( B  e.  CH  /\  x  e.  CH  /\  A  e. 
CH ) )
1615ad2antlr 726 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( B  e. 
CH  /\  x  e.  CH 
/\  A  e.  CH ) )
17 inss2 3719 . . . . . . . . . . . . 13  |-  ( A  i^i  B )  C_  B
18 ssid 3523 . . . . . . . . . . . . 13  |-  B  C_  B
1917, 18pm3.2i 455 . . . . . . . . . . . 12  |-  ( ( A  i^i  B ) 
C_  B  /\  B  C_  B )
20 sseq2 3526 . . . . . . . . . . . . . . . . 17  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( A  i^i  B
)  C_  x  <->  ( A  i^i  B )  C_  if ( x  e.  CH ,  x ,  0H )
) )
21 sseq1 3525 . . . . . . . . . . . . . . . . 17  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
x  C_  A  <->  if (
x  e.  CH ,  x ,  0H )  C_  A ) )
2220, 21anbi12d 710 . . . . . . . . . . . . . . . 16  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( ( A  i^i  B )  C_  x  /\  x  C_  A )  <->  ( ( A  i^i  B )  C_  if ( x  e.  CH ,  x ,  0H )  /\  if ( x  e.  CH ,  x ,  0H )  C_  A
) ) )
23223anbi2d 1304 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  <-> 
( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) ) ) )
24 breq1 4450 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
x  MH  B  <->  if (
x  e.  CH ,  x ,  0H )  MH  B ) )
2523, 24imbi12d 320 . . . . . . . . . . . . . 14  |-  ( x  =  if ( x  e.  CH ,  x ,  0H )  ->  (
( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  x  MH  B )  <->  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  if ( x  e.  CH ,  x ,  0H )  MH  B ) ) )
26 h0elch 25865 . . . . . . . . . . . . . . . 16  |-  0H  e.  CH
2726elimel 4002 . . . . . . . . . . . . . . 15  |-  if ( x  e.  CH ,  x ,  0H )  e.  CH
2813, 4, 27, 4mdslmd4i 26944 . . . . . . . . . . . . . 14  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  if (
x  e.  CH ,  x ,  0H )  /\  if ( x  e. 
CH ,  x ,  0H )  C_  A
)  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B
) )  ->  if ( x  e.  CH ,  x ,  0H )  MH  B )
2925, 28dedth 3991 . . . . . . . . . . . . 13  |-  ( x  e.  CH  ->  (
( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  ->  x  MH  B
) )
3029com12 31 . . . . . . . . . . . 12  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A )  /\  ( ( A  i^i  B )  C_  B  /\  B  C_  B ) )  ->  ( x  e. 
CH  ->  x  MH  B
) )
3119, 30mp3an3 1313 . . . . . . . . . . 11  |-  ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  ->  ( x  e. 
CH  ->  x  MH  B
) )
3231imp 429 . . . . . . . . . 10  |-  ( ( ( A  MH  B  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  /\  x  e.  CH )  ->  x  MH  B
)
3332an32s 802 . . . . . . . . 9  |-  ( ( ( A  MH  B  /\  x  e.  CH )  /\  ( ( A  i^i  B )  C_  x  /\  x  C_  A ) )  ->  x  MH  B
)
3433adantlll 717 . . . . . . . 8  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  x  MH  B
)
35 breq1 4450 . . . . . . . . . . . 12  |-  ( c  =  x  ->  (
c  MH  B  <->  x  MH  B ) )
36 breq2 4451 . . . . . . . . . . . 12  |-  ( c  =  x  ->  ( B  MH*  c  <->  B  MH*  x ) )
3735, 36imbi12d 320 . . . . . . . . . . 11  |-  ( c  =  x  ->  (
( c  MH  B  ->  B  MH*  c )  <->  ( x  MH  B  ->  B  MH*  x ) ) )
3837rspccva 3213 . . . . . . . . . 10  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  x  e.  CH )  ->  ( x  MH  B  ->  B  MH*  x )
)
3938adantlr 714 . . . . . . . . 9  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
x  MH  B  ->  B  MH*  x ) )
4039adantr 465 . . . . . . . 8  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( x  MH  B  ->  B  MH*  x ) )
4134, 40mpd 15 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  B  MH*  x
)
42 simprr 756 . . . . . . 7  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  x  C_  A
)
43 dmdi 26913 . . . . . . 7  |-  ( ( ( B  e.  CH  /\  x  e.  CH  /\  A  e.  CH )  /\  ( B  MH*  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( A  i^i  ( B  vH  x ) ) )
4416, 41, 42, 43syl12anc 1226 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( A  i^i  ( B  vH  x ) ) )
4513, 4chincli 26070 . . . . . . . . 9  |-  ( A  i^i  B )  e. 
CH
46 chjcom 26116 . . . . . . . . 9  |-  ( ( ( A  i^i  B
)  e.  CH  /\  x  e.  CH )  ->  ( ( A  i^i  B )  vH  x )  =  ( x  vH  ( A  i^i  B ) ) )
4745, 46mpan 670 . . . . . . . 8  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  vH  x )  =  ( x  vH  ( A  i^i  B ) ) )
481oveq2i 6294 . . . . . . . 8  |-  ( x  vH  ( A  i^i  B ) )  =  ( x  vH  ( B  i^i  A ) )
4947, 48syl6eq 2524 . . . . . . 7  |-  ( x  e.  CH  ->  (
( A  i^i  B
)  vH  x )  =  ( x  vH  ( B  i^i  A ) ) )
5049ad2antlr 726 . . . . . 6  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( A  i^i  B )  vH  x )  =  ( x  vH  ( B  i^i  A ) ) )
5110, 44, 503eqtr2d 2514 . . . . 5  |-  ( ( ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  /\  (
( A  i^i  B
)  C_  x  /\  x  C_  A ) )  ->  ( ( x  vH  B )  i^i 
A )  =  ( x  vH  ( B  i^i  A ) ) )
5251ex 434 . . . 4  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
( ( A  i^i  B )  C_  x  /\  x  C_  A )  -> 
( ( x  vH  B )  i^i  A
)  =  ( x  vH  ( B  i^i  A ) ) ) )
533, 52sylani 654 . . 3  |-  ( ( ( A. c  e. 
CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B )  /\  x  e.  CH )  ->  (
( ( B  i^i  A )  C_  x  /\  x  C_  A )  -> 
( ( x  vH  B )  i^i  A
)  =  ( x  vH  ( B  i^i  A ) ) ) )
5453ralrimiva 2878 . 2  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  A. x  e.  CH  ( ( ( B  i^i  A ) 
C_  x  /\  x  C_  A )  ->  (
( x  vH  B
)  i^i  A )  =  ( x  vH  ( B  i^i  A ) ) ) )
554, 13mdsl2bi 26934 . 2  |-  ( B  MH  A  <->  A. x  e.  CH  ( ( ( B  i^i  A ) 
C_  x  /\  x  C_  A )  ->  (
( x  vH  B
)  i^i  A )  =  ( x  vH  ( B  i^i  A ) ) ) )
5654, 55sylibr 212 1  |-  ( ( A. c  e.  CH  ( c  MH  B  ->  B  MH*  c )  /\  A  MH  B
)  ->  B  MH  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    C_ wss 3476   ifcif 3939   class class class wbr 4447  (class class class)co 6283   CHcch 25538    vH chj 25542   0Hc0h 25544    MH cmd 25575    MH* cdmd 25576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cc 8814  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571  ax-hilex 25608  ax-hfvadd 25609  ax-hvcom 25610  ax-hvass 25611  ax-hv0cl 25612  ax-hvaddid 25613  ax-hfvmul 25614  ax-hvmulid 25615  ax-hvmulass 25616  ax-hvdistr1 25617  ax-hvdistr2 25618  ax-hvmul0 25619  ax-hfi 25688  ax-his1 25691  ax-his2 25692  ax-his3 25693  ax-his4 25694  ax-hcompl 25811
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-acn 8322  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-rlim 13274  df-sum 13471  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-mulg 15867  df-cntz 16157  df-cmn 16603  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-cn 19510  df-cnp 19511  df-lm 19512  df-haus 19598  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cfil 21445  df-cau 21446  df-cmet 21447  df-grpo 24885  df-gid 24886  df-ginv 24887  df-gdiv 24888  df-ablo 24976  df-subgo 24996  df-vc 25131  df-nv 25177  df-va 25180  df-ba 25181  df-sm 25182  df-0v 25183  df-vs 25184  df-nmcv 25185  df-ims 25186  df-dip 25303  df-ssp 25327  df-ph 25420  df-cbn 25471  df-hnorm 25577  df-hba 25578  df-hvsub 25580  df-hlim 25581  df-hcau 25582  df-sh 25816  df-ch 25831  df-oc 25862  df-ch0 25863  df-shs 25918  df-chj 25920  df-md 26891  df-dmd 26892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator