MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csdfil Structured version   Visualization version   Unicode version

Theorem csdfil 20987
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
csdfil  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { x  e.  ~P X  |  ( X  \  x )  ~<  X }  e.  ( Fil `  X
) )
Distinct variable group:    x, X

Proof of Theorem csdfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3534 . . . . . 6  |-  ( x  =  y  ->  ( X  \  x )  =  ( X  \  y
) )
21breq1d 4405 . . . . 5  |-  ( x  =  y  ->  (
( X  \  x
)  ~<  X  <->  ( X  \  y )  ~<  X ) )
32elrab 3184 . . . 4  |-  ( y  e.  { x  e. 
~P X  |  ( X  \  x ) 
~<  X }  <->  ( y  e.  ~P X  /\  ( X  \  y )  ~<  X ) )
4 selpw 3949 . . . . 5  |-  ( y  e.  ~P X  <->  y  C_  X )
54anbi1i 709 . . . 4  |-  ( ( y  e.  ~P X  /\  ( X  \  y
)  ~<  X )  <->  ( y  C_  X  /\  ( X 
\  y )  ~<  X ) )
63, 5bitri 257 . . 3  |-  ( y  e.  { x  e. 
~P X  |  ( X  \  x ) 
~<  X }  <->  ( y  C_  X  /\  ( X 
\  y )  ~<  X ) )
76a1i 11 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( y  e.  {
x  e.  ~P X  |  ( X  \  x )  ~<  X }  <->  ( y  C_  X  /\  ( X  \  y
)  ~<  X ) ) )
8 elex 3040 . . 3  |-  ( X  e.  dom  card  ->  X  e.  _V )
98adantr 472 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  X  e.  _V )
10 difid 3747 . . . 4  |-  ( X 
\  X )  =  (/)
11 infn0 7851 . . . . . 6  |-  ( om  ~<_  X  ->  X  =/=  (/) )
1211adantl 473 . . . . 5  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  X  =/=  (/) )
13 0sdomg 7719 . . . . . 6  |-  ( X  e.  dom  card  ->  (
(/)  ~<  X  <->  X  =/=  (/) ) )
1413adantr 472 . . . . 5  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( (/)  ~<  X  <->  X  =/=  (/) ) )
1512, 14mpbird 240 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  (/) 
~<  X )
1610, 15syl5eqbr 4429 . . 3  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( X  \  X
)  ~<  X )
17 difeq2 3534 . . . . . 6  |-  ( y  =  X  ->  ( X  \  y )  =  ( X  \  X
) )
1817breq1d 4405 . . . . 5  |-  ( y  =  X  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  X )  ~<  X ) )
1918sbcieg 3288 . . . 4  |-  ( X  e.  dom  card  ->  (
[. X  /  y ]. ( X  \  y
)  ~<  X  <->  ( X  \  X )  ~<  X ) )
2019adantr 472 . . 3  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( [. X  /  y ]. ( X  \  y
)  ~<  X  <->  ( X  \  X )  ~<  X ) )
2116, 20mpbird 240 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  [. X  /  y ]. ( X  \  y
)  ~<  X )
22 sdomirr 7727 . . 3  |-  -.  X  ~<  X
23 0ex 4528 . . . . 5  |-  (/)  e.  _V
24 difeq2 3534 . . . . . . 7  |-  ( y  =  (/)  ->  ( X 
\  y )  =  ( X  \  (/) ) )
25 dif0 3749 . . . . . . 7  |-  ( X 
\  (/) )  =  X
2624, 25syl6eq 2521 . . . . . 6  |-  ( y  =  (/)  ->  ( X 
\  y )  =  X )
2726breq1d 4405 . . . . 5  |-  ( y  =  (/)  ->  ( ( X  \  y ) 
~<  X  <->  X  ~<  X ) )
2823, 27sbcie 3290 . . . 4  |-  ( [. (/)  /  y ]. ( X  \  y )  ~<  X 
<->  X  ~<  X )
2928a1i 11 . . 3  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( [. (/)  /  y ]. ( X  \  y
)  ~<  X  <->  X  ~<  X ) )
3022, 29mtbiri 310 . 2  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  -.  [. (/)  /  y ]. ( X  \  y
)  ~<  X )
31 simp1l 1054 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  X  e.  dom  card )
32 difexg 4545 . . . . . 6  |-  ( X  e.  dom  card  ->  ( X  \  w )  e.  _V )
3331, 32syl 17 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( X  \  w )  e. 
_V )
34 sscon 3556 . . . . . 6  |-  ( w 
C_  z  ->  ( X  \  z )  C_  ( X  \  w
) )
35343ad2ant3 1053 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( X  \  z )  C_  ( X  \  w
) )
36 ssdomg 7633 . . . . 5  |-  ( ( X  \  w )  e.  _V  ->  (
( X  \  z
)  C_  ( X  \  w )  ->  ( X  \  z )  ~<_  ( X  \  w ) ) )
3733, 35, 36sylc 61 . . . 4  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( X  \  z )  ~<_  ( X  \  w ) )
38 domsdomtr 7725 . . . . 5  |-  ( ( ( X  \  z
)  ~<_  ( X  \  w )  /\  ( X  \  w )  ~<  X )  ->  ( X  \  z )  ~<  X )
3938ex 441 . . . 4  |-  ( ( X  \  z )  ~<_  ( X  \  w
)  ->  ( ( X  \  w )  ~<  X  ->  ( X  \ 
z )  ~<  X ) )
4037, 39syl 17 . . 3  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  (
( X  \  w
)  ~<  X  ->  ( X  \  z )  ~<  X ) )
41 vex 3034 . . . 4  |-  w  e. 
_V
42 difeq2 3534 . . . . 5  |-  ( y  =  w  ->  ( X  \  y )  =  ( X  \  w
) )
4342breq1d 4405 . . . 4  |-  ( y  =  w  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  w )  ~<  X ) )
4441, 43sbcie 3290 . . 3  |-  ( [. w  /  y ]. ( X  \  y )  ~<  X 
<->  ( X  \  w
)  ~<  X )
45 vex 3034 . . . 4  |-  z  e. 
_V
46 difeq2 3534 . . . . 5  |-  ( y  =  z  ->  ( X  \  y )  =  ( X  \  z
) )
4746breq1d 4405 . . . 4  |-  ( y  =  z  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  z )  ~<  X ) )
4845, 47sbcie 3290 . . 3  |-  ( [. z  /  y ]. ( X  \  y )  ~<  X 
<->  ( X  \  z
)  ~<  X )
4940, 44, 483imtr4g 278 . 2  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  z )  ->  ( [. w  /  y ]. ( X  \  y
)  ~<  X  ->  [. z  /  y ]. ( X  \  y )  ~<  X ) )
50 infunsdom 8662 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  ( ( X  \ 
z )  ~<  X  /\  ( X  \  w
)  ~<  X ) )  ->  ( ( X 
\  z )  u.  ( X  \  w
) )  ~<  X )
5150ex 441 . . . . 5  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( ( ( X 
\  z )  ~<  X  /\  ( X  \  w )  ~<  X )  ->  ( ( X 
\  z )  u.  ( X  \  w
) )  ~<  X ) )
52 difindi 3688 . . . . . 6  |-  ( X 
\  ( z  i^i  w ) )  =  ( ( X  \ 
z )  u.  ( X  \  w ) )
5352breq1i 4402 . . . . 5  |-  ( ( X  \  ( z  i^i  w ) ) 
~<  X  <->  ( ( X 
\  z )  u.  ( X  \  w
) )  ~<  X )
5451, 53syl6ibr 235 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  -> 
( ( ( X 
\  z )  ~<  X  /\  ( X  \  w )  ~<  X )  ->  ( X  \ 
( z  i^i  w
) )  ~<  X ) )
55543ad2ant1 1051 . . 3  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  X )  ->  (
( ( X  \ 
z )  ~<  X  /\  ( X  \  w
)  ~<  X )  -> 
( X  \  (
z  i^i  w )
)  ~<  X ) )
5648, 44anbi12i 711 . . 3  |-  ( (
[. z  /  y ]. ( X  \  y
)  ~<  X  /\  [. w  /  y ]. ( X  \  y )  ~<  X )  <->  ( ( X  \  z )  ~<  X  /\  ( X  \  w )  ~<  X ) )
5745inex1 4537 . . . 4  |-  ( z  i^i  w )  e. 
_V
58 difeq2 3534 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( X  \  y )  =  ( X  \  (
z  i^i  w )
) )
5958breq1d 4405 . . . 4  |-  ( y  =  ( z  i^i  w )  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  ( z  i^i  w
) )  ~<  X ) )
6057, 59sbcie 3290 . . 3  |-  ( [. ( z  i^i  w
)  /  y ]. ( X  \  y
)  ~<  X  <->  ( X  \  ( z  i^i  w
) )  ~<  X )
6155, 56, 603imtr4g 278 . 2  |-  ( ( ( X  e.  dom  card  /\  om  ~<_  X )  /\  z  C_  X  /\  w  C_  X )  ->  (
( [. z  /  y ]. ( X  \  y
)  ~<  X  /\  [. w  /  y ]. ( X  \  y )  ~<  X )  ->  [. (
z  i^i  w )  /  y ]. ( X  \  y )  ~<  X ) )
627, 9, 21, 30, 49, 61isfild 20951 1  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { x  e.  ~P X  |  ( X  \  x )  ~<  X }  e.  ( Fil `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   {crab 2760   _Vcvv 3031   [.wsbc 3255    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   class class class wbr 4395   dom cdm 4839   ` cfv 5589   omcom 6711    ~<_ cdom 7585    ~< csdm 7586   cardccrd 8387   Filcfil 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-oi 8043  df-card 8391  df-cda 8616  df-fbas 19044  df-fil 20939
This theorem is referenced by:  ufilen  21023
  Copyright terms: Public domain W3C validator