Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbxpgOLD Structured version   Visualization version   Unicode version

Theorem csbxpgOLD 37254
Description: Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 23-Aug-2018. Use csbrn 5316 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbxpgOLD  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C
) )

Proof of Theorem csbxpgOLD
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabgOLD 37251 . . 3  |-  ( A  e.  D  ->  [_ A  /  x ]_ { z  |  E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) ) }  =  { z  |  [. A  /  x ]. E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) ) } )
2 sbcexgOLD 36948 . . . . 5  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  E. w [. A  /  x ]. E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
) ) )
3 sbcexgOLD 36948 . . . . . . 7  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y [. A  /  x ]. ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
) ) )
4 sbcangOLD 36934 . . . . . . . . 9  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  ( [. A  /  x ]. z  = 
<. w ,  y >.  /\  [. A  /  x ]. ( w  e.  B  /\  y  e.  C
) ) ) )
5 sbcg 3345 . . . . . . . . . 10  |-  ( A  e.  D  ->  ( [. A  /  x ]. z  =  <. w ,  y >.  <->  z  =  <. w ,  y >.
) )
6 sbcangOLD 36934 . . . . . . . . . . 11  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( w  e.  B  /\  y  e.  C
)  <->  ( [. A  /  x ]. w  e.  B  /\  [. A  /  x ]. y  e.  C ) ) )
7 sbcel2gOLD 36950 . . . . . . . . . . . 12  |-  ( A  e.  D  ->  ( [. A  /  x ]. w  e.  B  <->  w  e.  [_ A  /  x ]_ B ) )
8 sbcel2gOLD 36950 . . . . . . . . . . . 12  |-  ( A  e.  D  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
97, 8anbi12d 722 . . . . . . . . . . 11  |-  ( A  e.  D  ->  (
( [. A  /  x ]. w  e.  B  /\  [. A  /  x ]. y  e.  C
)  <->  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) )
106, 9bitrd 261 . . . . . . . . . 10  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( w  e.  B  /\  y  e.  C
)  <->  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) )
115, 10anbi12d 722 . . . . . . . . 9  |-  ( A  e.  D  ->  (
( [. A  /  x ]. z  =  <. w ,  y >.  /\  [. A  /  x ]. ( w  e.  B  /\  y  e.  C ) )  <->  ( z  =  <. w ,  y
>.  /\  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
124, 11bitrd 261 . . . . . . . 8  |-  ( A  e.  D  ->  ( [. A  /  x ]. ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  ( z  = 
<. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
1312exbidv 1779 . . . . . . 7  |-  ( A  e.  D  ->  ( E. y [. A  /  x ]. ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) )  <->  E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
143, 13bitrd 261 . . . . . 6  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) )  <->  E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
1514exbidv 1779 . . . . 5  |-  ( A  e.  D  ->  ( E. w [. A  /  x ]. E. y ( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
162, 15bitrd 261 . . . 4  |-  ( A  e.  D  ->  ( [. A  /  x ]. E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
)  <->  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) ) )
1716abbidv 2580 . . 3  |-  ( A  e.  D  ->  { z  |  [. A  /  x ]. E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) ) }  =  { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) } )
181, 17eqtrd 2496 . 2  |-  ( A  e.  D  ->  [_ A  /  x ]_ { z  |  E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  B  /\  y  e.  C
) ) }  =  { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) } )
19 df-xp 4859 . . . 4  |-  ( B  X.  C )  =  { <. w ,  y
>.  |  ( w  e.  B  /\  y  e.  C ) }
20 df-opab 4476 . . . 4  |-  { <. w ,  y >.  |  ( w  e.  B  /\  y  e.  C ) }  =  { z  |  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  B  /\  y  e.  C )
) }
2119, 20eqtri 2484 . . 3  |-  ( B  X.  C )  =  { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) ) }
2221csbeq2i 3794 . 2  |-  [_ A  /  x ]_ ( B  X.  C )  = 
[_ A  /  x ]_ { z  |  E. w E. y ( z  =  <. w ,  y
>.  /\  ( w  e.  B  /\  y  e.  C ) ) }
23 df-xp 4859 . . 3  |-  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C )  =  { <. w ,  y >.  |  ( w  e. 
[_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) }
24 df-opab 4476 . . 3  |-  { <. w ,  y >.  |  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) }  =  { z  |  E. w E. y
( z  =  <. w ,  y >.  /\  (
w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }
2523, 24eqtri 2484 . 2  |-  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C )  =  {
z  |  E. w E. y ( z  = 
<. w ,  y >.  /\  ( w  e.  [_ A  /  x ]_ B  /\  y  e.  [_ A  /  x ]_ C ) ) }
2618, 22, 253eqtr4g 2521 1  |-  ( A  e.  D  ->  [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455   E.wex 1674    e. wcel 1898   {cab 2448   [.wsbc 3279   [_csb 3375   <.cop 3986   {copab 4474    X. cxp 4851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-v 3059  df-sbc 3280  df-csb 3376  df-opab 4476  df-xp 4859
This theorem is referenced by:  csbresgOLD  37256  csbresgVD  37332
  Copyright terms: Public domain W3C validator