Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbunigVD Structured version   Unicode version

Theorem csbunigVD 33431
Description: Virtual deduction proof of csbunigOLD 4263. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunigOLD 4263 is csbunigVD 33431 without virtual deductions and was automatically derived from csbunigVD 33431.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) ).
4:2,3:  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
5:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
6:4,5:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
7:6:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
8:7:  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
10:8,9:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
11:10:  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
12:11:  |-  (. A  e.  V  ->.  { z  |  [. A  /  x ]. E. y (  z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
13:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ).
14:12,13:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
15::  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
16:15:  |-  A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
17:1,16:  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
18:1,17:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ).
19:14,18:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) } ).
20::  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }
21:19,20:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
qed:21:  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbunigVD  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )

Proof of Theorem csbunigVD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 33084 . . . . . . . . . . . . 13  |-  (. A  e.  V  ->.  A  e.  V ).
2 sbcg 3387 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
31, 2e1a 33146 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
4 sbcel2gOLD 3818 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
51, 4e1a 33146 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
) ).
6 pm4.38 872 . . . . . . . . . . . . 13  |-  ( ( ( [. A  /  x ]. z  e.  y  <-> 
z  e.  y )  /\  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
) )  ->  (
( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
76ex 434 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
)  ->  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
83, 5, 7e11 33207 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
9 sbcangOLD 3357 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) )
101, 9e1a 33146 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) ) ).
11 bibi1 327 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  <->  ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
1211biimprcd 225 . . . . . . . . . . 11  |-  ( ( ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( [. A  /  x ]. z  e.  y  /\  [. A  /  x ]. y  e.  B ) )  -> 
( [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) ) )
138, 10, 12e11 33207 . . . . . . . . . 10  |-  (. A  e.  V  ->.  ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
1413gen11 33135 . . . . . . . . 9  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. (
z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
15 exbi 1653 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  -> 
( E. y [. A  /  x ]. (
z  e.  y  /\  y  e.  B )  <->  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) ) )
1614, 15e1a 33146 . . . . . . . 8  |-  (. A  e.  V  ->.  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
17 sbcexgOLD 3368 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) ) )
181, 17e1a 33146 . . . . . . . 8  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B ) ) ).
19 bibi1 327 . . . . . . . . 9  |-  ( (
[. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) )  ->  (
( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) )  <->  ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ) )
2019biimprcd 225 . . . . . . . 8  |-  ( ( E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) )  ->  (
( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y [. A  /  x ]. ( z  e.  y  /\  y  e.  B
) )  ->  ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) ) )
2116, 18, 20e11 33207 . . . . . . 7  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) ) ).
2221gen11 33135 . . . . . 6  |-  (. A  e.  V  ->.  A. z ( [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B )  <->  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) ) ).
23 abbi 2574 . . . . . . 7  |-  ( A. z ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  <->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } )
2423biimpi 194 . . . . . 6  |-  ( A. z ( [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
)  <->  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) )  ->  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } )
2522, 24e1a 33146 . . . . 5  |-  (. A  e.  V  ->.  { z  | 
[. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ).
26 csbabgOLD 3842 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } )
271, 26e1a 33146 . . . . 5  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) } ).
28 eqeq2 2458 . . . . . 6  |-  ( { z  |  [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  <->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
2928biimpd 207 . . . . 5  |-  ( { z  |  [. A  /  x ]. E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  [. A  /  x ]. E. y ( z  e.  y  /\  y  e.  B ) }  ->  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
3025, 27, 29e11 33207 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ).
31 df-uni 4235 . . . . . . 7  |-  U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }
3231ax-gen 1605 . . . . . 6  |-  A. x U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }
33 spsbc 3326 . . . . . 6  |-  ( A  e.  V  ->  ( A. x U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  B ) }  ->  [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ) )
341, 32, 33e10 33213 . . . . 5  |-  (. A  e.  V  ->.  [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ).
35 sbceqg 3811 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  <->  [_ A  /  x ]_ U. B  = 
[_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ) )
3635biimpd 207 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  ->  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ { z  |  E. y ( z  e.  y  /\  y  e.  B ) } ) )
371, 34, 36e11 33207 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) } ).
38 eqeq2 2458 . . . . 5  |-  ( [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  <->  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
3938biimpd 207 . . . 4  |-  ( [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  ( [_ A  /  x ]_ U. B  =  [_ A  /  x ]_ {
z  |  E. y
( z  e.  y  /\  y  e.  B
) }  ->  [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) } ) )
4030, 37, 39e11 33207 . . 3  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) } ).
41 df-uni 4235 . . 3  |-  U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e. 
[_ A  /  x ]_ B ) }
42 eqeq2 2458 . . . 4  |-  ( U. [_ A  /  x ]_ B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }  ->  (
[_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B 
<-> 
[_ A  /  x ]_ U. B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) } ) )
4342biimprcd 225 . . 3  |-  ( [_ A  /  x ]_ U. B  =  { z  |  E. y ( z  e.  y  /\  y  e.  [_ A  /  x ]_ B ) }  ->  ( U. [_ A  /  x ]_ B  =  {
z  |  E. y
( z  e.  y  /\  y  e.  [_ A  /  x ]_ B
) }  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ) )
4440, 41, 43e10 33213 . 2  |-  (. A  e.  V  ->.  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B ).
4544in1 33081 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ U. B  =  U. [_ A  /  x ]_ B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804   {cab 2428   [.wsbc 3313   [_csb 3420   U.cuni 4234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-v 3097  df-sbc 3314  df-csb 3421  df-uni 4235  df-vd1 33080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator