Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrngVD Structured version   Unicode version

Theorem csbrngVD 34097
Description: Virtual deduction proof of csbrngOLD 34021. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrngOLD 34021 is csbrngVD 34097 without virtual deductions and was automatically derived from csbrngVD 34097.
1::  |-  (. A  e.  V  ->.  A  e.  V ).
2:1:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. <. w ,. y >.  e.  B  <->  [_ A  /  x ]_ <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
3:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ <. w ,. y >.  =  <. w ,  y >. ).
4:3:  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ <. w ,. y >.  e.  [_ A  /  x ]_ B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
5:2,4:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. <. w ,. y >.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
6:5:  |-  (. A  e.  V  ->.  A. w ( [. A  /  x ]. <. w ,.  y >.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
7:6:  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. <. w ,.  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
8:1:  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. <. w ,.  y >.  e.  B  <->  [. A  /  x ]. E. w <. w ,  y >.  e.  B ) ).
9:7,8:  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. w <. w  ,. y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
10:9:  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. E. w  <. w ,  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
11:10:  |-  (. A  e.  V  ->.  { y  |  [. A  /  x ]. E. w <.  w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
12:1:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  E. w  <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } ).
13:11,12:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  E. w  <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
14::  |-  ran  B  =  { y  |  E. w <. w ,. y >.  e.  B }
15:14:  |-  A. x ran  B  =  { y  |  E. w <. w ,. y >.  e.  B }
16:1,15:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B } ).
17:13,16:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
18::  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w  ,. y >.  e.  [_ A  /  x ]_ B }
19:17,18:  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  ran  [_  A  /  x ]_ B ).
qed:19:  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbrngVD  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )

Proof of Theorem csbrngVD
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 33745 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  A  e.  V ).
2 sbcel12gOLD 33705 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. w ,  y
>.  e.  B  <->  [_ A  /  x ]_ <. w ,  y
>.  e.  [_ A  /  x ]_ B ) )
31, 2e1a 33807 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( [. A  /  x ]. <. w ,  y >.  e.  B  <->  [_ A  /  x ]_ <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
4 csbconstg 3433 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. w ,  y >.  =  <. w ,  y >. )
51, 4e1a 33807 . . . . . . . . . . . 12  |-  (. A  e.  V  ->.  [_ A  /  x ]_ <. w ,  y
>.  =  <. w ,  y >. ).
6 eleq1 2526 . . . . . . . . . . . 12  |-  ( [_ A  /  x ]_ <. w ,  y >.  =  <. w ,  y >.  ->  ( [_ A  /  x ]_ <. w ,  y
>.  e.  [_ A  /  x ]_ B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
75, 6e1a 33807 . . . . . . . . . . 11  |-  (. A  e.  V  ->.  ( [_ A  /  x ]_ <. w ,  y >.  e.  [_ A  /  x ]_ B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B ) ).
8 bibi1 325 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. <. w ,  y
>.  e.  B  <->  [_ A  /  x ]_ <. w ,  y
>.  e.  [_ A  /  x ]_ B )  -> 
( ( [. A  /  x ]. <. w ,  y >.  e.  B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B )  <->  ( [_ A  /  x ]_ <. w ,  y >.  e.  [_ A  /  x ]_ B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B ) ) )
98biimprd 223 . . . . . . . . . . 11  |-  ( (
[. A  /  x ]. <. w ,  y
>.  e.  B  <->  [_ A  /  x ]_ <. w ,  y
>.  e.  [_ A  /  x ]_ B )  -> 
( ( [_ A  /  x ]_ <. w ,  y >.  e.  [_ A  /  x ]_ B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B )  ->  ( [. A  /  x ]. <. w ,  y
>.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) ) )
103, 7, 9e11 33868 . . . . . . . . . 10  |-  (. A  e.  V  ->.  ( [. A  /  x ]. <. w ,  y >.  e.  B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B ) ).
1110gen11 33796 . . . . . . . . 9  |-  (. A  e.  V  ->.  A. w ( [. A  /  x ]. <. w ,  y >.  e.  B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B ) ).
12 exbi 1671 . . . . . . . . 9  |-  ( A. w ( [. A  /  x ]. <. w ,  y >.  e.  B  <->  <.
w ,  y >.  e.  [_ A  /  x ]_ B )  ->  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
1311, 12e1a 33807 . . . . . . . 8  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
14 sbcexgOLD 33704 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w [. A  /  x ]. <. w ,  y
>.  e.  B ) )
1514bicomd 201 . . . . . . . . 9  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  [. A  /  x ]. E. w <. w ,  y >.  e.  B
) )
161, 15e1a 33807 . . . . . . . 8  |-  (. A  e.  V  ->.  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  [. A  /  x ]. E. w <. w ,  y >.  e.  B
) ).
17 bitr3 33667 . . . . . . . . 9  |-  ( ( E. w [. A  /  x ]. <. w ,  y >.  e.  B  <->  [. A  /  x ]. E. w <. w ,  y
>.  e.  B )  -> 
( ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B )  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B ) ) )
1817com12 31 . . . . . . . 8  |-  ( ( E. w [. A  /  x ]. <. w ,  y >.  e.  B  <->  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B )  -> 
( ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  [. A  /  x ]. E. w <. w ,  y >.  e.  B
)  ->  ( [. A  /  x ]. E. w <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ) )
1913, 16, 18e11 33868 . . . . . . 7  |-  (. A  e.  V  ->.  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B
) ).
2019gen11 33796 . . . . . 6  |-  (. A  e.  V  ->.  A. y ( [. A  /  x ]. E. w <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) ).
21 abbi 2585 . . . . . . 7  |-  ( A. y ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B
)  <->  { y  |  [. A  /  x ]. E. w <. w ,  y
>.  e.  B }  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B } )
2221biimpi 194 . . . . . 6  |-  ( A. y ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B
)  ->  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
2320, 22e1a 33807 . . . . 5  |-  (. A  e.  V  ->.  { y  | 
[. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
24 csbabgOLD 34015 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } )
251, 24e1a 33807 . . . . 5  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y
>.  e.  B } ).
26 eqeq2 2469 . . . . . 6  |-  ( { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y
>.  e.  B }  <->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ) )
2726biimpd 207 . . . . 5  |-  ( { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y
>.  e.  B }  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B } ) )
2823, 25, 27e11 33868 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B } ).
29 dfrn3 5181 . . . . . 6  |-  ran  B  =  { y  |  E. w <. w ,  y
>.  e.  B }
3029ax-gen 1623 . . . . 5  |-  A. x ran  B  =  { y  |  E. w <. w ,  y >.  e.  B }
31 csbeq2gOLD 33716 . . . . 5  |-  ( A  e.  V  ->  ( A. x ran  B  =  { y  |  E. w <. w ,  y
>.  e.  B }  ->  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B } ) )
321, 30, 31e10 33874 . . . 4  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ {
y  |  E. w <. w ,  y >.  e.  B } ).
33 eqeq2 2469 . . . . 5  |-  ( [_ A  /  x ]_ {
y  |  E. w <. w ,  y >.  e.  B }  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ {
y  |  E. w <. w ,  y >.  e.  B }  <->  [_ A  /  x ]_ ran  B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B } ) )
3433biimpd 207 . . . 4  |-  ( [_ A  /  x ]_ {
y  |  E. w <. w ,  y >.  e.  B }  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ {
y  |  E. w <. w ,  y >.  e.  B }  ->  [_ A  /  x ]_ ran  B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B } ) )
3528, 32, 34e11 33868 . . 3  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ).
36 dfrn3 5181 . . 3  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B }
37 eqeq2 2469 . . . 4  |-  ( ran  [_ A  /  x ]_ B  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B 
<-> 
[_ A  /  x ]_ ran  B  =  {
y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } ) )
3837biimprcd 225 . . 3  |-  ( [_ A  /  x ]_ ran  B  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B }  ->  ( ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B }  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B ) )
3935, 36, 38e10 33874 . 2  |-  (. A  e.  V  ->.  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B ).
4039in1 33742 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823   {cab 2439   [.wsbc 3324   [_csb 3420   <.cop 4022   ran crn 4989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-cnv 4996  df-dm 4998  df-rn 4999  df-vd1 33741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator