Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopab Structured version   Visualization version   Unicode version

Theorem csbopab 4733
 Description: Move substitution into a class abstraction. Version of csbopabgALT 4734 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbopab
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,,)   ()

Proof of Theorem csbopab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3352 . . . 4
2 dfsbcq2 3258 . . . . 5
32opabbidv 4459 . . . 4
41, 3eqeq12d 2486 . . 3
5 vex 3034 . . . 4
6 nfs1v 2286 . . . . 5
76nfopab 4461 . . . 4
8 sbequ12 2098 . . . . 5
98opabbidv 4459 . . . 4
105, 7, 9csbief 3374 . . 3
114, 10vtoclg 3093 . 2
12 csbprc 3774 . . 3
13 sbcex 3265 . . . . . . 7
1413con3i 142 . . . . . 6
1514nexdv 1790 . . . . 5
1615nexdv 1790 . . . 4
17 opabn0 4732 . . . . 5
1817necon1bbii 2692 . . . 4
1916, 18sylib 201 . . 3
2012, 19eqtr4d 2508 . 2
2111, 20pm2.61i 169 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wceq 1452  wex 1671  wsb 1805   wcel 1904  cvv 3031  wsbc 3255  csb 3349  c0 3722  copab 4453 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-opab 4455 This theorem is referenced by:  csbmpt12  4735  csbcnv  5023
 Copyright terms: Public domain W3C validator