MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopab Structured version   Unicode version

Theorem csbopab 4788
Description: Move substitution into a class abstraction. Version of csbopabgALT 4789 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbopab  |-  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
Distinct variable groups:    y, z, A    x, y, z
Allowed substitution hints:    ph( x, y, z)    A( x)

Proof of Theorem csbopab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3433 . . . 4  |-  ( w  =  A  ->  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  [_ A  /  x ]_ { <. y ,  z >.  |  ph } )
2 dfsbcq2 3330 . . . . 5  |-  ( w  =  A  ->  ( [ w  /  x ] ph  <->  [. A  /  x ]. ph ) )
32opabbidv 4520 . . . 4  |-  ( w  =  A  ->  { <. y ,  z >.  |  [
w  /  x ] ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
41, 3eqeq12d 2479 . . 3  |-  ( w  =  A  ->  ( [_ w  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [ w  /  x ] ph }  <->  [_ A  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [. A  /  x ]. ph } ) )
5 vex 3112 . . . 4  |-  w  e. 
_V
6 nfs1v 2182 . . . . 5  |-  F/ x [ w  /  x ] ph
76nfopab 4522 . . . 4  |-  F/_ x { <. y ,  z
>.  |  [ w  /  x ] ph }
8 sbequ12 1993 . . . . 5  |-  ( x  =  w  ->  ( ph 
<->  [ w  /  x ] ph ) )
98opabbidv 4520 . . . 4  |-  ( x  =  w  ->  { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph } )
105, 7, 9csbief 3455 . . 3  |-  [_ w  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [
w  /  x ] ph }
114, 10vtoclg 3167 . 2  |-  ( A  e.  _V  ->  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
)
12 csbprc 3830 . . 3  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ { <. y ,  z
>.  |  ph }  =  (/) )
13 sbcex 3337 . . . . . . 7  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
1413con3i 135 . . . . . 6  |-  ( -.  A  e.  _V  ->  -. 
[. A  /  x ]. ph )
1514nexdv 1885 . . . . 5  |-  ( -.  A  e.  _V  ->  -. 
E. z [. A  /  x ]. ph )
1615nexdv 1885 . . . 4  |-  ( -.  A  e.  _V  ->  -. 
E. y E. z [. A  /  x ]. ph )
17 opabn0 4787 . . . . 5  |-  ( {
<. y ,  z >.  |  [. A  /  x ]. ph }  =/=  (/)  <->  E. y E. z [. A  /  x ]. ph )
1817necon1bbii 2721 . . . 4  |-  ( -. 
E. y E. z [. A  /  x ]. ph  <->  { <. y ,  z
>.  |  [. A  /  x ]. ph }  =  (/) )
1916, 18sylib 196 . . 3  |-  ( -.  A  e.  _V  ->  {
<. y ,  z >.  |  [. A  /  x ]. ph }  =  (/) )
2012, 19eqtr4d 2501 . 2  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ { <. y ,  z
>.  |  ph }  =  { <. y ,  z
>.  |  [. A  /  x ]. ph } )
2111, 20pm2.61i 164 1  |-  [_ A  /  x ]_ { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1395   E.wex 1613   [wsb 1740    e. wcel 1819   _Vcvv 3109   [.wsbc 3327   [_csb 3430   (/)c0 3793   {copab 4514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-opab 4516
This theorem is referenced by:  csbmpt12  4790  csbcnv  5196
  Copyright terms: Public domain W3C validator