MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestg Structured version   Unicode version

Theorem csbnestg 3849
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestg  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( y)    V( x, y)

Proof of Theorem csbnestg
StepHypRef Expression
1 nfcv 2619 . . 3  |-  F/_ x C
21ax-gen 1619 . 2  |-  A. y F/_ x C
3 csbnestgf 3847 . 2  |-  ( ( A  e.  V  /\  A. y F/_ x C )  ->  [_ A  /  x ]_ [_ B  / 
y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C
)
42, 3mpan2 671 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ [_ B  /  y ]_ C  =  [_ [_ A  /  x ]_ B  /  y ]_ C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1393    = wceq 1395    e. wcel 1819   F/_wnfc 2605   [_csb 3430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3431
This theorem is referenced by:  csbco3g  3851  disjxpin  27587  cdleme31snd  36255  cdlemeg46c  36382
  Copyright terms: Public domain W3C validator