Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestg Structured version   Unicode version

Theorem csbnestg 3849
 Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestg
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem csbnestg
StepHypRef Expression
1 nfcv 2619 . . 3
21ax-gen 1619 . 2
3 csbnestgf 3847 . 2
42, 3mpan2 671 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1393   wceq 1395   wcel 1819  wnfc 2605  csb 3430 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3431 This theorem is referenced by:  csbco3g  3851  disjxpin  27587  cdleme31snd  36255  cdlemeg46c  36382
 Copyright terms: Public domain W3C validator