MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnegg Structured version   Visualization version   Unicode version

Theorem csbnegg 9897
Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
csbnegg  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )

Proof of Theorem csbnegg
StepHypRef Expression
1 csbov2g 6352 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( 0  -  B )  =  ( 0  -  [_ A  /  x ]_ B
) )
2 df-neg 9888 . . 3  |-  -u B  =  ( 0  -  B )
32csbeq2i 3793 . 2  |-  [_ A  /  x ]_ -u B  =  [_ A  /  x ]_ ( 0  -  B
)
4 df-neg 9888 . 2  |-  -u [_ A  /  x ]_ B  =  ( 0  -  [_ A  /  x ]_ B
)
51, 3, 43eqtr4g 2520 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ -u B  =  -u [_ A  /  x ]_ B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1454    e. wcel 1897   [_csb 3374  (class class class)co 6314   0cc0 9564    - cmin 9885   -ucneg 9886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-nul 4547  ax-pow 4594
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-fal 1460  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-dm 4862  df-iota 5564  df-fv 5608  df-ov 6317  df-neg 9888
This theorem is referenced by:  dvfsum2  23034  renegclALT  32579
  Copyright terms: Public domain W3C validator