Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbingVD Structured version   Unicode version

Theorem csbingVD 34104
Description: Virtual deduction proof of csbingOLD 34038. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbingOLD 34038 is csbingVD 34104 without virtual deductions and was automatically derived from csbingVD 34104.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  ( C  i^i  D )  =  { y  |  ( y  e.  C  /\  y  e.  D )  }
20:2:  |-  A. x ( C  i^i  D )  =  { y  |  ( y  e.  C  /\  y  e.  D ) }
30:1,20:  |-  (. A  e.  B  ->.  [. A  /  x ]. ( C  i^i  D )  =  { y  |  ( y  e.  C  /\  y  e.  D ) } ).
3:1,30:  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D )  =  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) } ).
4:1:  |-  (. A  e.  B  ->.  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  =  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D ) } ).
5:3,4:  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D ) } ).
6:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) ).
7:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) ).
8:6,7:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D )  ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D ) ) ).
10:9,8:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ).
11:10:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ).
12:11:  |-  (. A  e.  B  ->.  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D ) }  =  { y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ).
13:5,12:  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ).
14::  |-  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D )  =  {  y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }
15:13,14:  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) ).
qed:15:  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  (  [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbingVD  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )

Proof of Theorem csbingVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 33764 . . . . . 6  |-  (. A  e.  B  ->.  A  e.  B ).
2 df-in 3468 . . . . . . . 8  |-  ( C  i^i  D )  =  { y  |  ( y  e.  C  /\  y  e.  D ) }
32ax-gen 1623 . . . . . . 7  |-  A. x
( C  i^i  D
)  =  { y  |  ( y  e.  C  /\  y  e.  D ) }
4 spsbc 3337 . . . . . . 7  |-  ( A  e.  B  ->  ( A. x ( C  i^i  D )  =  { y  |  ( y  e.  C  /\  y  e.  D ) }  ->  [. A  /  x ]. ( C  i^i  D )  =  { y  |  ( y  e.  C  /\  y  e.  D
) } ) )
51, 3, 4e10 33893 . . . . . 6  |-  (. A  e.  B  ->.  [. A  /  x ]. ( C  i^i  D
)  =  { y  |  ( y  e.  C  /\  y  e.  D ) } ).
6 sbceqg 3823 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( C  i^i  D
)  =  { y  |  ( y  e.  C  /\  y  e.  D ) }  <->  [_ A  /  x ]_ ( C  i^i  D )  =  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) } ) )
76biimpd 207 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( C  i^i  D
)  =  { y  |  ( y  e.  C  /\  y  e.  D ) }  ->  [_ A  /  x ]_ ( C  i^i  D )  =  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D
) } ) )
81, 5, 7e11 33887 . . . . 5  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D
)  =  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) } ).
9 csbabgOLD 34034 . . . . . 6  |-  ( A  e.  B  ->  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  =  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) } )
101, 9e1a 33826 . . . . 5  |-  (. A  e.  B  ->.  [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  =  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D
) } ).
11 eqeq1 2458 . . . . . 6  |-  ( [_ A  /  x ]_ ( C  i^i  D )  = 
[_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  ->  ( [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) } 
<-> 
[_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  =  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D
) } ) )
1211biimprd 223 . . . . 5  |-  ( [_ A  /  x ]_ ( C  i^i  D )  = 
[_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  ->  ( [_ A  /  x ]_ { y  |  ( y  e.  C  /\  y  e.  D ) }  =  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) }  ->  [_ A  /  x ]_ ( C  i^i  D
)  =  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D ) } ) )
138, 10, 12e11 33887 . . . 4  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D
)  =  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D ) } ).
14 sbcangOLD 33709 . . . . . . . 8  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D
)  <->  ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D ) ) )
151, 14e1a 33826 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D ) ) ).
16 sbcel2gOLD 33725 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
171, 16e1a 33826 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C
) ).
18 sbcel2gOLD 33725 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
191, 18e1a 33826 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
) ).
20 pm4.38 870 . . . . . . . . 9  |-  ( ( ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C )  /\  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) )
2120ex 432 . . . . . . . 8  |-  ( (
[. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C )  -> 
( ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
)  ->  ( ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ) )
2217, 19, 21e11 33887 . . . . . . 7  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ).
23 bibi1 325 . . . . . . . 8  |-  ( (
[. A  /  x ]. ( y  e.  C  /\  y  e.  D
)  <->  ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D ) )  -> 
( ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) )  <->  ( ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ) )
2423biimprd 223 . . . . . . 7  |-  ( (
[. A  /  x ]. ( y  e.  C  /\  y  e.  D
)  <->  ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D ) )  -> 
( ( ( [. A  /  x ]. y  e.  C  /\  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) )  -> 
( [. A  /  x ]. ( y  e.  C  /\  y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ) )
2515, 22, 24e11 33887 . . . . . 6  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ).
2625gen11 33815 . . . . 5  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) ) ).
27 abbi 2585 . . . . . 6  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) )  <->  { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D
) }  =  {
y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } )
2827biimpi 194 . . . . 5  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  /\  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) )  ->  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) }  =  { y  |  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } )
2926, 28e1a 33826 . . . 4  |-  (. A  e.  B  ->.  { y  | 
[. A  /  x ]. ( y  e.  C  /\  y  e.  D
) }  =  {
y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ).
30 eqeq1 2458 . . . . 5  |-  ( [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) }  ->  ( [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }  <->  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) }  =  { y  |  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ) )
3130biimprd 223 . . . 4  |-  ( [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  [. A  /  x ]. (
y  e.  C  /\  y  e.  D ) }  ->  ( { y  |  [. A  /  x ]. ( y  e.  C  /\  y  e.  D ) }  =  { y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }  ->  [_ A  /  x ]_ ( C  i^i  D
)  =  { y  |  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ) )
3213, 29, 31e11 33887 . . 3  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D
)  =  { y  |  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ).
33 df-in 3468 . . 3  |-  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D )  =  {
y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }
34 eqeq2 2469 . . . 4  |-  ( (
[_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D )  =  { y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }  ->  ( [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D )  <->  [_ A  /  x ]_ ( C  i^i  D
)  =  { y  |  ( y  e. 
[_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) } ) )
3534biimprcd 225 . . 3  |-  ( [_ A  /  x ]_ ( C  i^i  D )  =  { y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }  ->  ( ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D )  =  {
y  |  ( y  e.  [_ A  /  x ]_ C  /\  y  e.  [_ A  /  x ]_ D ) }  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) ) )
3632, 33, 35e10 33893 . 2  |-  (. A  e.  B  ->.  [_ A  /  x ]_ ( C  i^i  D
)  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) ).
3736in1 33761 1  |-  ( A  e.  B  ->  [_ A  /  x ]_ ( C  i^i  D )  =  ( [_ A  /  x ]_ C  i^i  [_ A  /  x ]_ D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823   {cab 2439   [.wsbc 3324   [_csb 3420    i^i cin 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-sbc 3325  df-csb 3421  df-in 3468  df-vd1 33760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator