MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiebt Structured version   Unicode version

Theorem csbiebt 3308
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3312.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 2981 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 spsbc 3199 . . . . 5  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
32adantr 465 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [. A  /  x ]. ( x  =  A  ->  B  =  C ) ) )
4 simpl 457 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  A  e.  _V )
5 biimt 335 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  ( x  =  A  ->  B  =  C ) ) )
6 csbeq1a 3297 . . . . . . . 8  |-  ( x  =  A  ->  B  =  [_ A  /  x ]_ B )
76eqeq1d 2451 . . . . . . 7  |-  ( x  =  A  ->  ( B  =  C  <->  [_ A  /  x ]_ B  =  C ) )
85, 7bitr3d 255 . . . . . 6  |-  ( x  =  A  ->  (
( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
98adantl 466 . . . . 5  |-  ( ( ( A  e.  _V  /\ 
F/_ x C )  /\  x  =  A )  ->  ( (
x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
10 nfv 1673 . . . . . 6  |-  F/ x  A  e.  _V
11 nfnfc1 2582 . . . . . 6  |-  F/ x F/_ x C
1210, 11nfan 1861 . . . . 5  |-  F/ x
( A  e.  _V  /\ 
F/_ x C )
13 nfcsb1v 3304 . . . . . . 7  |-  F/_ x [_ A  /  x ]_ B
1413a1i 11 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x [_ A  /  x ]_ B )
15 simpr 461 . . . . . 6  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/_ x C )
1614, 15nfeqd 2593 . . . . 5  |-  ( ( A  e.  _V  /\  F/_ x C )  ->  F/ x [_ A  /  x ]_ B  =  C )
174, 9, 12, 16sbciedf 3222 . . . 4  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [. A  /  x ]. ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C
) )
183, 17sylibd 214 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  ->  [_ A  /  x ]_ B  =  C
) )
1913a1i 11 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x [_ A  /  x ]_ B )
20 id 22 . . . . . . . 8  |-  ( F/_ x C  ->  F/_ x C )
2119, 20nfeqd 2593 . . . . . . 7  |-  ( F/_ x C  ->  F/ x [_ A  /  x ]_ B  =  C
)
2211, 21nfan1 1860 . . . . . 6  |-  F/ x
( F/_ x C  /\  [_ A  /  x ]_ B  =  C )
237biimprcd 225 . . . . . . 7  |-  ( [_ A  /  x ]_ B  =  C  ->  ( x  =  A  ->  B  =  C ) )
2423adantl 466 . . . . . 6  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  ( x  =  A  ->  B  =  C ) )
2522, 24alrimi 1811 . . . . 5  |-  ( (
F/_ x C  /\  [_ A  /  x ]_ B  =  C )  ->  A. x ( x  =  A  ->  B  =  C ) )
2625ex 434 . . . 4  |-  ( F/_ x C  ->  ( [_ A  /  x ]_ B  =  C  ->  A. x
( x  =  A  ->  B  =  C ) ) )
2726adantl 466 . . 3  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( [_ A  /  x ]_ B  =  C  ->  A. x ( x  =  A  ->  B  =  C ) ) )
2818, 27impbid 191 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
291, 28sylan 471 1  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756   F/_wnfc 2566   _Vcvv 2972   [.wsbc 3186   [_csb 3288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-v 2974  df-sbc 3187  df-csb 3289
This theorem is referenced by:  csbiedf  3309  csbieb  3310  csbiegf  3312
  Copyright terms: Public domain W3C validator