Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbie2t Structured version   Unicode version

Theorem csbie2t 3424
 Description: Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3425). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbie2t.1
csbie2t.2
Assertion
Ref Expression
csbie2t
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem csbie2t
StepHypRef Expression
1 nfa1 1956 . 2
2 nfcvd 2581 . 2
3 csbie2t.1 . . 3
43a1i 11 . 2
5 nfa2 2013 . . . 4
6 nfv 1755 . . . 4
75, 6nfan 1988 . . 3
8 nfcvd 2581 . . 3
9 csbie2t.2 . . . 4
109a1i 11 . . 3
11 2sp 1921 . . . 4
1211impl 624 . . 3
137, 8, 10, 12csbiedf 3416 . 2
141, 2, 4, 13csbiedf 3416 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370  wal 1435   wceq 1437   wcel 1872  cvv 3080  csb 3395 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-v 3082  df-sbc 3300  df-csb 3396 This theorem is referenced by:  csbie2  3425
 Copyright terms: Public domain W3C validator