Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbhypf Structured version   Visualization version   Unicode version

Theorem csbhypf 3381
 Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3094 for class substitution version. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
csbhypf.1
csbhypf.2
csbhypf.3
Assertion
Ref Expression
csbhypf
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem csbhypf
StepHypRef Expression
1 csbhypf.1 . . . 4
21nfeq2 2606 . . 3
3 nfcsb1v 3378 . . . 4
4 csbhypf.2 . . . 4
53, 4nfeq 2602 . . 3
62, 5nfim 2002 . 2
7 eqeq1 2454 . . 3
8 csbeq1a 3371 . . . 4
98eqeq1d 2452 . . 3
107, 9imbi12d 322 . 2
11 csbhypf.3 . 2
126, 10, 11chvar 2105 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1443  wnfc 2578  csb 3362 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-sbc 3267  df-csb 3363 This theorem is referenced by:  disji2  4388  disjprg  4397  disjxun  4399  tfisi  6682  coe1fzgsumdlem  18888  evl1gsumdlem  18937  iundisj2  22495  disji2f  28180  disjif2  28184  iundisj2f  28193  iundisj2fi  28366
 Copyright terms: Public domain W3C validator