Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTVD Structured version   Unicode version

Theorem csbfv12gALTVD 34119
Description: Virtual deduction proof of csbfv12gALTOLD 34036. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALTOLD 34036 is csbfv12gALTVD 34119 without virtual deductions and was automatically derived from csbfv12gALTVD 34119.
1::  |-  (. A  e.  C  ->.  A  e.  C ).
2:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y }  =  {  y } ).
3:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B  } )  =  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } ) ).
4:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { B }  =  {  [_ A  /  x ]_ B } ).
5:4:  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
6:3,5:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B  } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
7:1:  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F " {  B } )  =  { y }  <->  [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ { y } ) ).
8:6,2:  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ ( F " {  B } )  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
9:7,8:  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F " {  B } )  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ).
10:9:  |-  (. A  e.  C  ->.  A. y ( [. A  /  x ]. ( F  " { B } )  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
11:10:  |-  (. A  e.  C  ->.  { y  |  [. A  /  x ]. ( F  " { B } )  =  { y } }  =  { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
12:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F  " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B } )  =  { y } } ).
13:11,12:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F  " { B } )  =  { y } }  =  { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y  } } ).
14:13:  |-  (. A  e.  C  ->.  U. [_ A  /  x ]_ { y  |  (  F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F "  { [_ A  /  x ]_ B } )  =  { y } } ).
15:1:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  (  F " { B } )  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } } ).
16:14,15:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  (  F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
17::  |-  ( F `  B )  =  U. { y  |  ( F " { B } )  =  { y } }
18:17:  |-  A. x ( F `  B )  =  U. { y  |  ( F " { B  } )  =  { y } }
19:1,18:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } } ).
20:16,19:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
21::  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
22:20,21:  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ).
qed:22:  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTVD  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )

Proof of Theorem csbfv12gALTVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 33764 . . . . . . . . . . 11  |-  (. A  e.  C  ->.  A  e.  C ).
2 sbceqg 3823 . . . . . . . . . . 11  |-  ( A  e.  C  ->  ( [. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } ) )
31, 2e1a 33826 . . . . . . . . . 10  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y } ) ).
4 csbima12gOLD 5343 . . . . . . . . . . . . 13  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } ) )
51, 4e1a 33826 . . . . . . . . . . . 12  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " [_ A  /  x ]_ { B } ) ).
6 csbsng 4074 . . . . . . . . . . . . . 14  |-  ( A  e.  C  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
71, 6e1a 33826 . . . . . . . . . . . . 13  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B } ).
8 imaeq2 5321 . . . . . . . . . . . . 13  |-  ( [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }  ->  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) )
97, 8e1a 33826 . . . . . . . . . . . 12  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
10 eqeq1 2458 . . . . . . . . . . . . 13  |-  ( [_ A  /  x ]_ ( F " { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )  ->  ( [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  <-> 
( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ) )
1110biimprd 223 . . . . . . . . . . . 12  |-  ( [_ A  /  x ]_ ( F " { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )  ->  ( ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } )  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  ->  [_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ) )
125, 9, 11e11 33887 . . . . . . . . . . 11  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) ).
13 csbconstg 3433 . . . . . . . . . . . 12  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y }  =  { y } )
141, 13e1a 33826 . . . . . . . . . . 11  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y }  =  { y } ).
15 eqeq12 2473 . . . . . . . . . . . 12  |-  ( (
[_ A  /  x ]_ ( F " { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  /\  [_ A  /  x ]_ { y }  =  { y } )  ->  ( [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) )
1615ex 432 . . . . . . . . . . 11  |-  ( [_ A  /  x ]_ ( F " { B }
)  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  ->  ( [_ A  /  x ]_ { y }  =  { y }  ->  ( [_ A  /  x ]_ ( F " { B }
)  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ) )
1712, 14, 16e11 33887 . . . . . . . . . 10  |-  (. A  e.  C  ->.  ( [_ A  /  x ]_ ( F
" { B }
)  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
18 bibi1 325 . . . . . . . . . . 11  |-  ( (
[. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } )  ->  ( ( [. A  /  x ]. ( F " { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  <-> 
( [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ) )
1918biimprd 223 . . . . . . . . . 10  |-  ( (
[. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } )  ->  ( ( [_ A  /  x ]_ ( F " { B }
)  =  [_ A  /  x ]_ { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ->  ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ) )
203, 17, 19e11 33887 . . . . . . . . 9  |-  (. A  e.  C  ->.  ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
2120gen11 33815 . . . . . . . 8  |-  (. A  e.  C  ->.  A. y ( [. A  /  x ]. ( F " { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) ).
22 abbi 2585 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  <->  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } )
2322biimpi 194 . . . . . . . 8  |-  ( A. y ( [. A  /  x ]. ( F
" { B }
)  =  { y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } )  ->  { y  | 
[. A  /  x ]. ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
2421, 23e1a 33826 . . . . . . 7  |-  (. A  e.  C  ->.  { y  | 
[. A  /  x ]. ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
25 csbabgOLD 34034 . . . . . . . 8  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } } )
261, 25e1a 33826 . . . . . . 7  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } } ).
27 eqeq2 2469 . . . . . . . 8  |-  ( { y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( [_ A  /  x ]_ {
y  |  ( F
" { B }
)  =  { y } }  =  {
y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  <->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
2827biimpd 207 . . . . . . 7  |-  ( { y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( [_ A  /  x ]_ {
y  |  ( F
" { B }
)  =  { y } }  =  {
y  |  [. A  /  x ]. ( F
" { B }
)  =  { y } }  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
2924, 26, 28e11 33887 . . . . . 6  |-  (. A  e.  C  ->.  [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
30 unieq 4243 . . . . . 6  |-  ( [_ A  /  x ]_ {
y  |  ( F
" { B }
)  =  { y } }  =  {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
)
3129, 30e1a 33826 . . . . 5  |-  (. A  e.  C  ->.  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
32 csbunigOLD 34035 . . . . . 6  |-  ( A  e.  C  ->  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } } )
331, 32e1a 33826 . . . . 5  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } } ).
34 eqeq2 2469 . . . . . 6  |-  ( U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  <->  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
) )
3534biimpd 207 . . . . 5  |-  ( U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } }  ->  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
3631, 33, 35e11 33887 . . . 4  |-  (. A  e.  C  ->.  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ).
37 dffv4 5845 . . . . . 6  |-  ( F `
 B )  = 
U. { y  |  ( F " { B } )  =  {
y } }
3837ax-gen 1623 . . . . 5  |-  A. x
( F `  B
)  =  U. {
y  |  ( F
" { B }
)  =  { y } }
39 csbeq2gOLD 33735 . . . . 5  |-  ( A  e.  C  ->  ( A. x ( F `  B )  =  U. { y  |  ( F " { B } )  =  {
y } }  ->  [_ A  /  x ]_ ( F `  B )  =  [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  { y } }
) )
401, 38, 39e10 33893 . . . 4  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B
)  =  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } } ).
41 eqeq2 2469 . . . . 5  |-  ( [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ ( F `  B
)  =  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  <->  [_ A  /  x ]_ ( F `  B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } ) )
4241biimpd 207 . . . 4  |-  ( [_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  (
[_ A  /  x ]_ ( F `  B
)  =  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  ->  [_ A  /  x ]_ ( F `
 B )  = 
U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
) )
4336, 40, 42e11 33887 . . 3  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B
)  =  U. {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ).
44 dffv4 5845 . . 3  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }
45 eqeq2 2469 . . . 4  |-  ( (
[_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( [_ A  /  x ]_ ( F `  B )  =  (
[_ A  /  x ]_ F `  [_ A  /  x ]_ B )  <->  [_ A  /  x ]_ ( F `  B
)  =  U. {
y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } } ) )
4645biimprcd 225 . . 3  |-  ( [_ A  /  x ]_ ( F `  B )  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }  ->  ( ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }  ->  [_ A  /  x ]_ ( F `  B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ) )
4743, 44, 46e10 33893 . 2  |-  (. A  e.  C  ->.  [_ A  /  x ]_ ( F `  B
)  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) ).
4847in1 33761 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1396    = wceq 1398    e. wcel 1823   {cab 2439   [.wsbc 3324   [_csb 3420   {csn 4016   U.cuni 4235   "cima 4991   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-xp 4994  df-cnv 4996  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fv 5578  df-vd1 33760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator