Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTOLD Structured version   Visualization version   Unicode version

Theorem csbfv12gALTOLD 37254
Description: Move class substitution in and out of a function value. The proof is derived from the virtual deduction proof csbfv12gALTVD 37337. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 20-Aug-2018. Use csbfv12 5927 instead. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTOLD  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )

Proof of Theorem csbfv12gALTOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbunigOLD 37253 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } } )
2 csbabgOLD 37252 . . . . 5  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } } )
3 sbceqg 3785 . . . . . . 7  |-  ( A  e.  C  ->  ( [. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } ) )
4 csbima12gOLD 5208 . . . . . . . . 9  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } ) )
5 csbsng 4042 . . . . . . . . . 10  |-  ( A  e.  C  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
65imaeq2d 5190 . . . . . . . . 9  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) )
74, 6eqtrd 2496 . . . . . . . 8  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) )
8 csbconstg 3388 . . . . . . . 8  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y }  =  { y } )
97, 8eqeq12d 2477 . . . . . . 7  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) )
103, 9bitrd 261 . . . . . 6  |-  ( A  e.  C  ->  ( [. A  /  x ]. ( F " { B } )  =  {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) )
1110abbidv 2580 . . . . 5  |-  ( A  e.  C  ->  { y  |  [. A  /  x ]. ( F " { B } )  =  { y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
122, 11eqtrd 2496 . . . 4  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
1312unieqd 4222 . . 3  |-  ( A  e.  C  ->  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
)
141, 13eqtrd 2496 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
15 dffv4 5889 . . 3  |-  ( F `
 B )  = 
U. { y  |  ( F " { B } )  =  {
y } }
1615csbeq2i 3794 . 2  |-  [_ A  /  x ]_ ( F `
 B )  = 
[_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }
17 dffv4 5889 . 2  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }
1814, 16, 173eqtr4g 2521 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1455    e. wcel 1898   {cab 2448   [.wsbc 3279   [_csb 3375   {csn 3980   U.cuni 4212   "cima 4859   ` cfv 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-xp 4862  df-cnv 4864  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fv 5613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator