Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTOLD Structured version   Unicode version

Theorem csbfv12gALTOLD 33329
Description: Move class substitution in and out of a function value. The proof is derived from the virtual deduction proof csbfv12gALTVD 33407. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 20-Aug-2018. Use csbfv12 5887 instead. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTOLD  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )

Proof of Theorem csbfv12gALTOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbunigOLD 4259 . . 3  |-  ( A  e.  C  ->  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  {
y } } )
2 csbabgOLD 3838 . . . . 5  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  [. A  /  x ]. ( F " { B }
)  =  { y } } )
3 sbceqg 3807 . . . . . . 7  |-  ( A  e.  C  ->  ( [. A  /  x ]. ( F " { B } )  =  {
y }  <->  [_ A  /  x ]_ ( F " { B } )  = 
[_ A  /  x ]_ { y } ) )
4 csbima12gOLD 5341 . . . . . . . . 9  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F "
[_ A  /  x ]_ { B } ) )
5 csbsng 4069 . . . . . . . . . 10  |-  ( A  e.  C  ->  [_ A  /  x ]_ { B }  =  { [_ A  /  x ]_ B }
)
65imaeq2d 5323 . . . . . . . . 9  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ F " [_ A  /  x ]_ { B } )  =  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) )
74, 6eqtrd 2482 . . . . . . . 8  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F
" { B }
)  =  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } ) )
8 csbconstg 3430 . . . . . . . 8  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y }  =  { y } )
97, 8eqeq12d 2463 . . . . . . 7  |-  ( A  e.  C  ->  ( [_ A  /  x ]_ ( F " { B } )  =  [_ A  /  x ]_ {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) )
103, 9bitrd 253 . . . . . 6  |-  ( A  e.  C  ->  ( [. A  /  x ]. ( F " { B } )  =  {
y }  <->  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } ) )
1110abbidv 2577 . . . . 5  |-  ( A  e.  C  ->  { y  |  [. A  /  x ]. ( F " { B } )  =  { y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
122, 11eqtrd 2482 . . . 4  |-  ( A  e.  C  ->  [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
1312unieqd 4240 . . 3  |-  ( A  e.  C  ->  U. [_ A  /  x ]_ { y  |  ( F " { B } )  =  { y } }  =  U. { y  |  ( [_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  { y } }
)
141, 13eqtrd 2482 . 2  |-  ( A  e.  C  ->  [_ A  /  x ]_ U. {
y  |  ( F
" { B }
)  =  { y } }  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } } )
15 dffv4 5849 . . 3  |-  ( F `
 B )  = 
U. { y  |  ( F " { B } )  =  {
y } }
1615csbeq2i 3818 . 2  |-  [_ A  /  x ]_ ( F `
 B )  = 
[_ A  /  x ]_ U. { y  |  ( F " { B } )  =  {
y } }
17 dffv4 5849 . 2  |-  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B )  =  U. { y  |  (
[_ A  /  x ]_ F " { [_ A  /  x ]_ B } )  =  {
y } }
1814, 16, 173eqtr4g 2507 1  |-  ( A  e.  C  ->  [_ A  /  x ]_ ( F `
 B )  =  ( [_ A  /  x ]_ F `  [_ A  /  x ]_ B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1381    e. wcel 1802   {cab 2426   [.wsbc 3311   [_csb 3417   {csn 4010   U.cuni 4230   "cima 4988   ` cfv 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-xp 4991  df-cnv 4993  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fv 5582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator