MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbeq2d Structured version   Visualization version   Unicode version

Theorem csbeq2d 3784
Description: Formula-building deduction rule for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
csbeq2d.1  |-  F/ x ph
csbeq2d.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
csbeq2d  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )

Proof of Theorem csbeq2d
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq2d.1 . . . 4  |-  F/ x ph
2 csbeq2d.2 . . . . 5  |-  ( ph  ->  B  =  C )
32eleq2d 2534 . . . 4  |-  ( ph  ->  ( y  e.  B  <->  y  e.  C ) )
41, 3sbcbid 3309 . . 3  |-  ( ph  ->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2589 . 2  |-  ( ph  ->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
6 df-csb 3350 . 2  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
7 df-csb 3350 . 2  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
85, 6, 73eqtr4g 2530 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1452   F/wnf 1675    e. wcel 1904   {cab 2457   [.wsbc 3255   [_csb 3349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-sbc 3256  df-csb 3350
This theorem is referenced by:  csbeq2dv  3785  poimirlem26  32030
  Copyright terms: Public domain W3C validator