Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csb0 Structured version   Unicode version

Theorem csb0 3831
 Description: The proper substitution of a class into the empty set is empty. (Contributed by NM, 18-Aug-2018.)
Assertion
Ref Expression
csb0

Proof of Theorem csb0
StepHypRef Expression
1 csbconstg 3443 . 2
2 csbprc 3830 . 2
31, 2pm2.61i 164 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1395   wcel 1819  cvv 3109  csb 3430  c0 3793 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-in 3478  df-ss 3485  df-nul 3794 This theorem is referenced by:  disjdsct  27676  onfrALTlem5  33457  onfrALTlem4  33458
 Copyright terms: Public domain W3C validator