MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngunit Structured version   Unicode version

Theorem crngunit 17443
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2392 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2392 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
3 eqid 2392 . . . . . . . . . . 11  |-  (oppr `  R
)  =  (oppr `  R
)
4 eqid 2392 . . . . . . . . . . 11  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
51, 2, 3, 4crngoppr 17408 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
653expa 1194 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
76eqcomd 2400 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
87an32s 802 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
98eqeq1d 2394 . . . . . 6  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
109rexbidva 2903 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
1110pm5.32da 639 . . . 4  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
123, 1opprbas 17410 . . . . 5  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
13 eqid 2392 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
1412, 13, 4dvdsr 17427 . . . 4  |-  ( X ( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) )
15 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
161, 15, 2dvdsr 17427 . . . 4  |-  ( X 
.||  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
1711, 14, 163bitr4g 288 . . 3  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
1817anbi2d 701 . 2  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
19 crngunit.1 . . 3  |-  U  =  (Unit `  R )
20 crngunit.2 . . 3  |-  .1.  =  ( 1r `  R )
2119, 20, 15, 3, 13isunit 17438 . 2  |-  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X ( ||r `  (oppr
`  R ) )  .1.  ) )
22 pm4.24 641 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
2318, 21, 223bitr4g 288 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836   E.wrex 2743   class class class wbr 4380   ` cfv 5509  (class class class)co 6214   Basecbs 14653   .rcmulr 14722   1rcur 17285   CRingccrg 17331  opprcoppr 17403   ||rcdsr 17419  Unitcui 17420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-cnex 9477  ax-resscn 9478  ax-1cn 9479  ax-icn 9480  ax-addcl 9481  ax-addrcl 9482  ax-mulcl 9483  ax-mulrcl 9484  ax-mulcom 9485  ax-addass 9486  ax-mulass 9487  ax-distr 9488  ax-i2m1 9489  ax-1ne0 9490  ax-1rid 9491  ax-rnegex 9492  ax-rrecex 9493  ax-cnre 9494  ax-pre-lttri 9495  ax-pre-lttrn 9496  ax-pre-ltadd 9497  ax-pre-mulgt0 9498
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-pss 3418  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-tp 3962  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-tr 4474  df-eprel 4718  df-id 4722  df-po 4727  df-so 4728  df-fr 4765  df-we 4767  df-ord 4808  df-on 4809  df-lim 4810  df-suc 4811  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-om 6618  df-tpos 6891  df-recs 6978  df-rdg 7012  df-er 7247  df-en 7454  df-dom 7455  df-sdom 7456  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-le 9563  df-sub 9738  df-neg 9739  df-nn 10471  df-2 10529  df-3 10530  df-ndx 14656  df-slot 14657  df-base 14658  df-sets 14659  df-plusg 14734  df-mulr 14735  df-cmn 16936  df-mgp 17274  df-cring 17333  df-oppr 17404  df-dvdsr 17422  df-unit 17423
This theorem is referenced by:  dvdsunit  17444  znunit  18712
  Copyright terms: Public domain W3C validator