MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngunit Structured version   Unicode version

Theorem crngunit 16754
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
crngunit.1  |-  U  =  (Unit `  R )
crngunit.2  |-  .1.  =  ( 1r `  R )
crngunit.3  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
crngunit  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)

Proof of Theorem crngunit
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2443 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
3 eqid 2443 . . . . . . . . . . 11  |-  (oppr `  R
)  =  (oppr `  R
)
4 eqid 2443 . . . . . . . . . . 11  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
51, 2, 3, 4crngoppr 16719 . . . . . . . . . 10  |-  ( ( R  e.  CRing  /\  y  e.  ( Base `  R
)  /\  X  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) X )  =  ( y ( .r
`  (oppr
`  R ) ) X ) )
653expa 1187 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  R ) X )  =  ( y ( .r `  (oppr `  R
) ) X ) )
76eqcomd 2448 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  y  e.  ( Base `  R ) )  /\  X  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
87an32s 802 . . . . . . 7  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( y ( .r
`  (oppr
`  R ) ) X )  =  ( y ( .r `  R ) X ) )
98eqeq1d 2451 . . . . . 6  |-  ( ( ( R  e.  CRing  /\  X  e.  ( Base `  R ) )  /\  y  e.  ( Base `  R ) )  -> 
( ( y ( .r `  (oppr `  R
) ) X )  =  .1.  <->  ( y
( .r `  R
) X )  =  .1.  ) )
109rexbidva 2732 . . . . 5  |-  ( ( R  e.  CRing  /\  X  e.  ( Base `  R
) )  ->  ( E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R ) ) X )  =  .1.  <->  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
1110pm5.32da 641 . . . 4  |-  ( R  e.  CRing  ->  ( ( X  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  )  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) ) )
123, 1opprbas 16721 . . . . 5  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
13 eqid 2443 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
1412, 13, 4dvdsr 16738 . . . 4  |-  ( X ( ||r `
 (oppr
`  R ) )  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  R
) ) X )  =  .1.  ) )
15 crngunit.3 . . . . 5  |-  .||  =  (
||r `  R )
161, 15, 2dvdsr 16738 . . . 4  |-  ( X 
.||  .1.  <->  ( X  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  R ) X )  =  .1.  ) )
1711, 14, 163bitr4g 288 . . 3  |-  ( R  e.  CRing  ->  ( X
( ||r `
 (oppr
`  R ) )  .1.  <->  X  .||  .1.  )
)
1817anbi2d 703 . 2  |-  ( R  e.  CRing  ->  ( ( X  .||  .1.  /\  X
( ||r `
 (oppr
`  R ) )  .1.  )  <->  ( X  .|| 
.1.  /\  X  .||  .1.  )
) )
19 crngunit.1 . . 3  |-  U  =  (Unit `  R )
20 crngunit.2 . . 3  |-  .1.  =  ( 1r `  R )
2119, 20, 15, 3, 13isunit 16749 . 2  |-  ( X  e.  U  <->  ( X  .|| 
.1.  /\  X ( ||r `  (oppr
`  R ) )  .1.  ) )
22 pm4.24 643 . 2  |-  ( X 
.||  .1.  <->  ( X  .||  .1.  /\  X  .||  .1.  )
)
2318, 21, 223bitr4g 288 1  |-  ( R  e.  CRing  ->  ( X  e.  U  <->  X  .||  .1.  )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2716   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   Basecbs 14174   .rcmulr 14239   1rcur 16603   CRingccrg 16646  opprcoppr 16714   ||rcdsr 16730  Unitcui 16731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-tpos 6745  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-plusg 14251  df-mulr 14252  df-cmn 16279  df-mgp 16592  df-cring 16648  df-oppr 16715  df-dvdsr 16733  df-unit 16734
This theorem is referenced by:  dvdsunit  16755  znunit  17996
  Copyright terms: Public domain W3C validator