MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngridl Structured version   Unicode version

Theorem crngridl 18204
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
crng2idl.i  |-  I  =  (LIdeal `  R )
crngridl.o  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
crngridl  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )

Proof of Theorem crngridl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crng2idl.i . 2  |-  I  =  (LIdeal `  R )
2 eqidd 2403 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  R )
)
3 crngridl.o . . . . . 6  |-  O  =  (oppr
`  R )
4 eqid 2402 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
53, 4opprbas 17596 . . . . 5  |-  ( Base `  R )  =  (
Base `  O )
65a1i 11 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  =  (
Base `  O )
)
7 ssv 3461 . . . . 5  |-  ( Base `  R )  C_  _V
87a1i 11 . . . 4  |-  ( R  e.  CRing  ->  ( Base `  R )  C_  _V )
9 eqid 2402 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
103, 9oppradd 17597 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  O )
1110oveqi 6290 . . . . 5  |-  ( x ( +g  `  R
) y )  =  ( x ( +g  `  O ) y )
1211a1i 11 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
13 ovex 6305 . . . . 5  |-  ( x ( .r `  R
) y )  e. 
_V
1413a1i 11 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  e.  _V )
15 eqid 2402 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
16 eqid 2402 . . . . . 6  |-  ( .r
`  O )  =  ( .r `  O
)
174, 15, 3, 16crngoppr 17594 . . . . 5  |-  ( ( R  e.  CRing  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  R
) y )  =  ( x ( .r
`  O ) y ) )
18173expb 1198 . . . 4  |-  ( ( R  e.  CRing  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( .r
`  R ) y )  =  ( x ( .r `  O
) y ) )
192, 6, 8, 12, 14, 18lidlrsppropd 18196 . . 3  |-  ( R  e.  CRing  ->  ( (LIdeal `  R )  =  (LIdeal `  O )  /\  (RSpan `  R )  =  (RSpan `  O ) ) )
2019simpld 457 . 2  |-  ( R  e.  CRing  ->  (LIdeal `  R
)  =  (LIdeal `  O ) )
211, 20syl5eq 2455 1  |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058    C_ wss 3413   ` cfv 5568  (class class class)co 6277   Basecbs 14839   +g cplusg 14907   .rcmulr 14908   CRingccrg 17517  opprcoppr 17589  LIdealclidl 18134  RSpancrsp 18135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-tpos 6957  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-7 10639  df-8 10640  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-sca 14923  df-vsca 14924  df-ip 14925  df-cmn 17122  df-mgp 17460  df-cring 17519  df-oppr 17590  df-lss 17897  df-lsp 17936  df-sra 18136  df-rgmod 18137  df-lidl 18138  df-rsp 18139
This theorem is referenced by:  crng2idl  18205
  Copyright terms: Public domain W3C validator