Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm23 Structured version   Unicode version

Theorem crngm23 30565
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1  |-  G  =  ( 1st `  R
)
crngm.2  |-  H  =  ( 2nd `  R
)
crngm.3  |-  X  =  ran  G
Assertion
Ref Expression
crngm23  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( ( A H C ) H B ) )

Proof of Theorem crngm23
StepHypRef Expression
1 crngm.1 . . . . 5  |-  G  =  ( 1st `  R
)
2 crngm.2 . . . . 5  |-  H  =  ( 2nd `  R
)
3 crngm.3 . . . . 5  |-  X  =  ran  G
41, 2, 3crngocom 30564 . . . 4  |-  ( ( R  e. CRingOps  /\  B  e.  X  /\  C  e.  X )  ->  ( B H C )  =  ( C H B ) )
543adant3r1 1203 . . 3  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B H C )  =  ( C H B ) )
65oveq2d 6212 . 2  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A H ( B H C ) )  =  ( A H ( C H B ) ) )
7 crngorngo 30563 . . 3  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
81, 2, 3rngoass 25506 . . 3  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( A H ( B H C ) ) )
97, 8sylan 469 . 2  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( A H ( B H C ) ) )
101, 2, 3rngoass 25506 . . . . . 6  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A H C ) H B )  =  ( A H ( C H B ) ) )
11103exp2 1212 . . . . 5  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( C  e.  X  ->  ( B  e.  X  ->  (
( A H C ) H B )  =  ( A H ( C H B ) ) ) ) ) )
1211com34 83 . . . 4  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  (
( A H C ) H B )  =  ( A H ( C H B ) ) ) ) ) )
13123imp2 1209 . . 3  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H C ) H B )  =  ( A H ( C H B ) ) )
147, 13sylan 469 . 2  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H C ) H B )  =  ( A H ( C H B ) ) )
156, 9, 143eqtr4d 2433 1  |-  ( ( R  e. CRingOps  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A H B ) H C )  =  ( ( A H C ) H B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826   ran crn 4914   ` cfv 5496  (class class class)co 6196   1stc1st 6697   2ndc2nd 6698   RingOpscrngo 25494  CRingOpsccring 30558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-fv 5504  df-ov 6199  df-1st 6699  df-2nd 6700  df-rngo 25495  df-com2 25530  df-crngo 30559
This theorem is referenced by:  crngm4  30566
  Copyright terms: Public domain W3C validator